Skip to main content
U.S. flag

An official website of the United States government

Geologic influence on induced seismicity: Constraints from potential field data in Oklahoma

January 1, 2017

Recent Oklahoma seismicity shows a regional correlation with increased wastewater injection activity, but local variations suggest that some areas are more likely to exhibit induced seismicity than others. We combine geophysical and drill hole data to map subsurface geologic features in the crystalline basement, where most earthquakes are occurring, and examine probable contributing factors. We find that most earthquakes are located where the crystalline basement is likely composed of fractured intrusive or metamorphic rock. Areas with extrusive rock or thick (>4 km) sedimentary cover exhibit little seismicity, even in high injection rate areas, similar to deep sedimentary basins in Michigan and western North Dakota. These differences in seismicity may be due to variations in permeability structure: within intrusive rocks, fluids can become narrowly focused in fractures and faults, causing an increase in local pore fluid pressure, whereas more distributed pore space in sedimentary and extrusive rocks may relax pore fluid pressure.

Publication Year 2017
Title Geologic influence on induced seismicity: Constraints from potential field data in Oklahoma
DOI 10.1002/2016GL071808
Authors Anjana K. Shah, G. Randy Keller
Publication Type Article
Publication Subtype Journal Article
Series Title Geophysical Research Letters
Index ID 70189110
Record Source USGS Publications Warehouse
USGS Organization Crustal Geophysics and Geochemistry Science Center