Skip to main content
U.S. flag

An official website of the United States government

Geologic Hazards Science Center

The Geologic Hazards Science Center (GHSC), on the Colorado School of Mines campus, is home to the National Earthquake Information Center (NEIC), many scientists in the Earthquake Hazards Program and Landslide Hazards Program, as well as the Geomagnetism Program staff.

News

Studying Tsunami Sands to Better Understand the 1700 Cascadia Earthquake

Studying Tsunami Sands to Better Understand the 1700 Cascadia Earthquake

USGS Seeks Landslide Risk Reduction Proposals

USGS Seeks Landslide Risk Reduction Proposals

USGS Seeks Earthquake Hazards Research Proposals

USGS Seeks Earthquake Hazards Research Proposals

Publications

Debris-flow entrainment modelling under climate change: Considering antecedent moisture conditions along the flow path

Debris-flow volumes can increase along their flow path by entraining sediment stored in the channel bed and banks, thus also increasing hazard potential. Theoretical considerations, laboratory experiments and field investigations all indicate that the saturation conditions of the sediment along the flow path can greatly influence the amount of sediment entrained. However, this process is usually n
Authors
Anna Könz, Jacob Hirschberg, Brian McArdell, Benjamin B. Mirus, Tjalling de Haas, Perry Bartelt, Peter Molnar

Assessing locations susceptible to shallow landslide initiation during prolonged intense rainfall in the Lares, Utuado, and Naranjito municipalities of Puerto Rico

Hurricane Maria induced about 70 000 landslides throughout Puerto Rico, USA, including thousands each in three municipalities situated in Puerto Rico's rugged Cordillera Central range. By combining a nonlinear soil-depth model, presumed wettest-case pore pressures, and quasi-three-dimensional (3D) slope-stability analysis, we developed a landslide susceptibility map that has very good performance
Authors
Rex L. Baum, Dianne L. Brien, Mark E. Reid, William Schulz, Matthew J. Tello

Evaluation of debris-flow building damage forecasts

Reliable forecasts of building damage due to debris flows may provide situational awareness and guide land and emergency management decisions. Application of debris-flow runout models to generate such forecasts requires combining hazard intensity predictions with fragility functions that link hazard intensity with building damage. In this study, we evaluated the performance of building damage fore
Authors
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, Jason W. Kean