Kyle B Withers
Kyle Withers is a research geophysicist with the Earthquake Hazards Program.
Science and Products
Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview
This data release contains data sets associated with the 2023 50-State National Seismic Hazard Model Update. The 2023 50-State National Seimsic Hazard Model (NSHM) Update includes an update to the NSHMs for the conterminous U.S (CONUS, last updated in 2018), Alaska (AK, last updated in 2007), and Hawaii (last updated in 2001). Data sets include inputs like seismicity catalogs used as input to the
Basin effects from 3D simulated ground motions in the Greater Los Angeles region for use in seismic-hazard analyses
We develop basin-depth-scaling models (i.e. “basin terms”) from the long-period (T≥2s) simulated ground motions of the Southern California Earthquake Center (SCEC) CyberShake project for use in seismic hazard analyses at sites within the sedimentary basins of southern California. Basin terms use the Next Generation Attenuation (NGA)-West-2 ground-motion models (GMMs) as reference models and use
Authors
Morgan P. Moschetti, Eric M. Thompson, Kyle Withers
The 2023 US 50-State National Seismic Hazard Model: Overview and implications
The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard (both increase
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Edward H. Field, Morgan P. Moschetti, Kishor S. Jaiswal, Kevin R. Milner, Sanaz Rezaeian, Arthur Frankel, Andrea L. Llenos, Andrew J. Michael, Jason M. Altekruse, Sean Kamran Ahdi, Kyle Withers, Charles Mueller, Yuehua Zeng, Robert E. Chase, Leah M. Salditch, Nicolas Luco, Kenneth S. Rukstales, Julie A Herrick, Demi Leafar Girot, Brad T. Aagaard, Adrian Bender, Michael Blanpied, Richard W. Briggs, Oliver S. Boyd, Brandon Clayton, Christopher DuRoss, Eileen L. Evans, Peter J. Haeussler, Alexandra Elise Hatem, Kirstie Lafon Haynie, Elizabeth H. Hearn, Kaj M. Johnson, Zachary Alan Kortum, N. Simon Kwong, Andrew James Makdisi, Henry (Ben) Mason, Daniel McNamara, Devin McPhillips, P. Okubo, Morgan T. Page, Fred Pollitz, Justin Rubinstein, Bruce E. Shaw, Zheng-Kang Shen, Brian Shiro, James Andrew Smith, William J. Stephenson, Eric M. Thompson, Jessica Ann Thompson Jobe, Erin Wirth, Robert C. Witter
Automated detection of clipping in broadband earthquake records
Because the amount of available ground‐motion data has increased over the last decades, the need for automated processing algorithms has also increased. One difficulty with automated processing is to screen clipped records. Clipping occurs when the ground‐motion amplitude exceeds the dynamic range of the linear response of the instrument. Clipped records in which the amplitude exceeds the dynamic
Authors
James Kael Kleckner, Kyle Withers, Eric M. Thompson, J.M. Rekoske, Emily Wolin, Morgan P. Moschetti
Spectral damping scaling factors for horizontal components of ground motions from subduction earthquakes using NGA-Subduction data
This article develops global models of damping scaling factors (DSFs) for subduction zone earthquakes that are functions of the damping ratio, spectral period, earthquake magnitude, and distance. The Next Generation Attenuation for subduction earthquakes (NGA-Sub) project has developed the largest uniformly processed database of recorded ground motions to date from seven subduction regions: Alaska
Authors
Sanaz Rezaeian, L. Al Atik, N. M. Kuehn, N. A. Abrahamson, Y. Bozorgnia, S. Mazzoni, Kyle Withers, K. Campbell
A machine learning approach to developing ground motion models from simulated ground motions
We use a machine learning approach to build a ground motion model (GMM) from a synthetic database of ground motions extracted from the Southern California CyberShake study. An artificial neural network is used to find the optimal weights that best fit the target data (without overfitting), with input parameters chosen to match that of state-of-the-art GMMs. We validate our synthetic-based GMM with
Authors
Kyle Withers, Morgan P. Moschetti, Eric M. Thompson
Combining dynamic rupture simulations with ground motion data to characterize seismic hazard from Mw 3-5.8 earthquakes in Oklahoma and Kansas
Many seismically active areas suffer from a lack of near‐source ground‐motion recordings, making ground‐motion prediction difficult at distances within ∼40 km∼40 km from an earthquake. We aim to aid the development of near‐source ground‐motion prediction equations (GMPEs) by generating synthetic ground‐motion data via simulation. Building on previous work using point‐source moment tensor sources
Authors
Samuel Bydlon, Kyle Withers, Eric M. Dunham
A suite of exercises for verifying dynamic earthquake rupture codes
We describe a set of benchmark exercises that are designed to test if computer codes that simulate dynamic earthquake rupture are working as intended. These types of computer codes are often used to understand how earthquakes operate, and they produce simulation results that include earthquake size, amounts of fault slip, and the patterns of ground shaking and crustal deformation. The benchmark ex
Authors
Ruth A. Harris, Michael Barall, Brad T. Aagaard, Shuo Ma, Daniel Roten, Kim Olsen, Benchun Duan, Dunyu Liu, Bin Luo, Kangchen Bai, Jean-Paul Ampuero, Yoshihiro Kaneko, Alice-Agnes Gabriel, Kenneth Duru, Thomas Ulrich, Stephanie Wollherr, Zheqiang Shi, Eric Dunham, Sam Bydlon, Zhenguo Zhang, Xiaofei Chen, Surendra N. Somala, Christian Pelties, Josue Tago, Victor Manuel Cruz-Atienza, Jeremy Kozdon, Eric Daub, Khurram Aslam, Yuko Kase, Kyle Withers, Luis Dalguer
Integrate urban‐scale seismic hazard analyses with the U.S. National Seismic Hazard Model
For more than 20 yrs, damage patterns and instrumental recordings have highlighted the influence of the local 3D geologic structure on earthquake ground motions (e.g., MM 6.7 Northridge, California, Gao et al., 1996; MM 6.9 Kobe, Japan, Kawase, 1996; MM 6.8 Nisqually, Washington, Frankel, Carver, and Williams, 2002). Although this and other local‐scale features are critical to improving seismic ha
Authors
Morgan P. Moschetti, Nicolas Luco, Arthur Frankel, Mark D. Petersen, Brad T. Aagaard, Annemarie S. Baltay, Michael Blanpied, Oliver S. Boyd, Richard W. Briggs, Ryan D. Gold, Robert Graves, Stephen H. Hartzell, Sanaz Rezaeian, William J. Stephenson, David J. Wald, Robert A. Williams, Kyle Withers
Science and Products
Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview
This data release contains data sets associated with the 2023 50-State National Seismic Hazard Model Update. The 2023 50-State National Seimsic Hazard Model (NSHM) Update includes an update to the NSHMs for the conterminous U.S (CONUS, last updated in 2018), Alaska (AK, last updated in 2007), and Hawaii (last updated in 2001). Data sets include inputs like seismicity catalogs used as input to the
Basin effects from 3D simulated ground motions in the Greater Los Angeles region for use in seismic-hazard analyses
We develop basin-depth-scaling models (i.e. “basin terms”) from the long-period (T≥2s) simulated ground motions of the Southern California Earthquake Center (SCEC) CyberShake project for use in seismic hazard analyses at sites within the sedimentary basins of southern California. Basin terms use the Next Generation Attenuation (NGA)-West-2 ground-motion models (GMMs) as reference models and use
Authors
Morgan P. Moschetti, Eric M. Thompson, Kyle Withers
The 2023 US 50-State National Seismic Hazard Model: Overview and implications
The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard (both increase
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Edward H. Field, Morgan P. Moschetti, Kishor S. Jaiswal, Kevin R. Milner, Sanaz Rezaeian, Arthur Frankel, Andrea L. Llenos, Andrew J. Michael, Jason M. Altekruse, Sean Kamran Ahdi, Kyle Withers, Charles Mueller, Yuehua Zeng, Robert E. Chase, Leah M. Salditch, Nicolas Luco, Kenneth S. Rukstales, Julie A Herrick, Demi Leafar Girot, Brad T. Aagaard, Adrian Bender, Michael Blanpied, Richard W. Briggs, Oliver S. Boyd, Brandon Clayton, Christopher DuRoss, Eileen L. Evans, Peter J. Haeussler, Alexandra Elise Hatem, Kirstie Lafon Haynie, Elizabeth H. Hearn, Kaj M. Johnson, Zachary Alan Kortum, N. Simon Kwong, Andrew James Makdisi, Henry (Ben) Mason, Daniel McNamara, Devin McPhillips, P. Okubo, Morgan T. Page, Fred Pollitz, Justin Rubinstein, Bruce E. Shaw, Zheng-Kang Shen, Brian Shiro, James Andrew Smith, William J. Stephenson, Eric M. Thompson, Jessica Ann Thompson Jobe, Erin Wirth, Robert C. Witter
Automated detection of clipping in broadband earthquake records
Because the amount of available ground‐motion data has increased over the last decades, the need for automated processing algorithms has also increased. One difficulty with automated processing is to screen clipped records. Clipping occurs when the ground‐motion amplitude exceeds the dynamic range of the linear response of the instrument. Clipped records in which the amplitude exceeds the dynamic
Authors
James Kael Kleckner, Kyle Withers, Eric M. Thompson, J.M. Rekoske, Emily Wolin, Morgan P. Moschetti
Spectral damping scaling factors for horizontal components of ground motions from subduction earthquakes using NGA-Subduction data
This article develops global models of damping scaling factors (DSFs) for subduction zone earthquakes that are functions of the damping ratio, spectral period, earthquake magnitude, and distance. The Next Generation Attenuation for subduction earthquakes (NGA-Sub) project has developed the largest uniformly processed database of recorded ground motions to date from seven subduction regions: Alaska
Authors
Sanaz Rezaeian, L. Al Atik, N. M. Kuehn, N. A. Abrahamson, Y. Bozorgnia, S. Mazzoni, Kyle Withers, K. Campbell
A machine learning approach to developing ground motion models from simulated ground motions
We use a machine learning approach to build a ground motion model (GMM) from a synthetic database of ground motions extracted from the Southern California CyberShake study. An artificial neural network is used to find the optimal weights that best fit the target data (without overfitting), with input parameters chosen to match that of state-of-the-art GMMs. We validate our synthetic-based GMM with
Authors
Kyle Withers, Morgan P. Moschetti, Eric M. Thompson
Combining dynamic rupture simulations with ground motion data to characterize seismic hazard from Mw 3-5.8 earthquakes in Oklahoma and Kansas
Many seismically active areas suffer from a lack of near‐source ground‐motion recordings, making ground‐motion prediction difficult at distances within ∼40 km∼40 km from an earthquake. We aim to aid the development of near‐source ground‐motion prediction equations (GMPEs) by generating synthetic ground‐motion data via simulation. Building on previous work using point‐source moment tensor sources
Authors
Samuel Bydlon, Kyle Withers, Eric M. Dunham
A suite of exercises for verifying dynamic earthquake rupture codes
We describe a set of benchmark exercises that are designed to test if computer codes that simulate dynamic earthquake rupture are working as intended. These types of computer codes are often used to understand how earthquakes operate, and they produce simulation results that include earthquake size, amounts of fault slip, and the patterns of ground shaking and crustal deformation. The benchmark ex
Authors
Ruth A. Harris, Michael Barall, Brad T. Aagaard, Shuo Ma, Daniel Roten, Kim Olsen, Benchun Duan, Dunyu Liu, Bin Luo, Kangchen Bai, Jean-Paul Ampuero, Yoshihiro Kaneko, Alice-Agnes Gabriel, Kenneth Duru, Thomas Ulrich, Stephanie Wollherr, Zheqiang Shi, Eric Dunham, Sam Bydlon, Zhenguo Zhang, Xiaofei Chen, Surendra N. Somala, Christian Pelties, Josue Tago, Victor Manuel Cruz-Atienza, Jeremy Kozdon, Eric Daub, Khurram Aslam, Yuko Kase, Kyle Withers, Luis Dalguer
Integrate urban‐scale seismic hazard analyses with the U.S. National Seismic Hazard Model
For more than 20 yrs, damage patterns and instrumental recordings have highlighted the influence of the local 3D geologic structure on earthquake ground motions (e.g., MM 6.7 Northridge, California, Gao et al., 1996; MM 6.9 Kobe, Japan, Kawase, 1996; MM 6.8 Nisqually, Washington, Frankel, Carver, and Williams, 2002). Although this and other local‐scale features are critical to improving seismic ha
Authors
Morgan P. Moschetti, Nicolas Luco, Arthur Frankel, Mark D. Petersen, Brad T. Aagaard, Annemarie S. Baltay, Michael Blanpied, Oliver S. Boyd, Richard W. Briggs, Ryan D. Gold, Robert Graves, Stephen H. Hartzell, Sanaz Rezaeian, William J. Stephenson, David J. Wald, Robert A. Williams, Kyle Withers