Skip to main content
U.S. flag

An official website of the United States government

Minnesota

Filter Total Items: 14

Ecoflows: Developing Indices of Streamflow Alteration

The Minnesota Pollution Control Agency (MPCA) lists streamflow alteration as a key stressor on aquatic life in many watersheds. However, the MPCA currently does not have the information needed to quantitatively associate metrics from Index of Biological Integrity (IBI) surveys with metrics of streamflow alteration. We are using USGS streamgage data and MPCA IBI data to develop relations between...
link

Ecoflows: Developing Indices of Streamflow Alteration

The Minnesota Pollution Control Agency (MPCA) lists streamflow alteration as a key stressor on aquatic life in many watersheds. However, the MPCA currently does not have the information needed to quantitatively associate metrics from Index of Biological Integrity (IBI) surveys with metrics of streamflow alteration. We are using USGS streamgage data and MPCA IBI data to develop relations between...
Learn More

Chemicals of Concern in the Great Lakes Basin

The Great Lakes are an important freshwater source of drinking water, fisheries, and habitat. Chemicals of concern are introduced to the environment by human activities, but resulting ecological consequences are little understood. With federal and University partners, we are characterizing the presence of contaminants and potential effects to fish in Great Lakes tributaries.
link

Chemicals of Concern in the Great Lakes Basin

The Great Lakes are an important freshwater source of drinking water, fisheries, and habitat. Chemicals of concern are introduced to the environment by human activities, but resulting ecological consequences are little understood. With federal and University partners, we are characterizing the presence of contaminants and potential effects to fish in Great Lakes tributaries.
Learn More

Environmental Effects of Agricultural Practices

As agricultural land in the Minnesota River Basin is retired, tile drains are removed or broken and riparian corridors are planted to reduce runoff. Early studies saw decreased sediment and nitrogen and improved biological indicators but no significant changes in phosphorus. This project continues to investigate the linkages between riparian buffer extent, age, and continuity; stream water; and...
link

Environmental Effects of Agricultural Practices

As agricultural land in the Minnesota River Basin is retired, tile drains are removed or broken and riparian corridors are planted to reduce runoff. Early studies saw decreased sediment and nitrogen and improved biological indicators but no significant changes in phosphorus. This project continues to investigate the linkages between riparian buffer extent, age, and continuity; stream water; and...
Learn More

Development of a FluEgg Model for the St. Croix River

The USGS partnered with the Minnesota Department of Natural Resources to collect hydraulic and water chemistry data in the lower St. Croix River for development of a model that predicts the probability of successful egg hatching and survival of juvenile invasive carp over a range of water temperature and streamflow conditions.
link

Development of a FluEgg Model for the St. Croix River

The USGS partnered with the Minnesota Department of Natural Resources to collect hydraulic and water chemistry data in the lower St. Croix River for development of a model that predicts the probability of successful egg hatching and survival of juvenile invasive carp over a range of water temperature and streamflow conditions.
Learn More

Arsenic in Minnesota groundwater—Occurrence and relation to hydrogeologic and geochemical factors

Geologic-sourced arsenic is common in Minnesota groundwater. Drinking-water managers, well owners, and well contractors need to know where and why high arsenic in groundwater is likely to occur in wells in order to take measures to protect public health. The USGS is assessing the spatial distribution of high arsenic groundwater in Minnesota, and identifying factors affecting arsenic mobilization.
link

Arsenic in Minnesota groundwater—Occurrence and relation to hydrogeologic and geochemical factors

Geologic-sourced arsenic is common in Minnesota groundwater. Drinking-water managers, well owners, and well contractors need to know where and why high arsenic in groundwater is likely to occur in wells in order to take measures to protect public health. The USGS is assessing the spatial distribution of high arsenic groundwater in Minnesota, and identifying factors affecting arsenic mobilization.
Learn More

Impacts of agricultural drainage on groundwater recharge

Artificial subsurface drainage is being increasingly utilized on agricultural land in southeast Minnesota. This region is underlain by thinner glacial deposits than are found in the historically drained areas of the State. Due to these thinner deposits, drainage in this area may have a greater impact on recharge to the underlying bedrock aquifers, a critical resource to the region.
link

Impacts of agricultural drainage on groundwater recharge

Artificial subsurface drainage is being increasingly utilized on agricultural land in southeast Minnesota. This region is underlain by thinner glacial deposits than are found in the historically drained areas of the State. Due to these thinner deposits, drainage in this area may have a greater impact on recharge to the underlying bedrock aquifers, a critical resource to the region.
Learn More

Assessing Hydrologic Changes in the St. Louis River Basin from Past Land Uses

Resource managers can use assessments of past and future land use to make science-based decisions. This project characterizes how changes in land use can change groundwater and surface-water flows in the St. Louis River Basin, MN. The USGS is constructing a set of groundwater models to simulate groundwater/surface-water interactions and evaluate how water flows have changed.
link

Assessing Hydrologic Changes in the St. Louis River Basin from Past Land Uses

Resource managers can use assessments of past and future land use to make science-based decisions. This project characterizes how changes in land use can change groundwater and surface-water flows in the St. Louis River Basin, MN. The USGS is constructing a set of groundwater models to simulate groundwater/surface-water interactions and evaluate how water flows have changed.
Learn More

Measuring Suspended-Sediment Concentrations, Grain Sizes and Bedload using Acoustic Doppler Velocity Meters and Echologgers in the Lower Chippewa River, Wisconsin

Sediment from the Chippewa River deposits in the Mississippi River navigation channel, sometimes disrupting commercial barge traffic and resulting in expensive and ecologically disruptive dredging operations. The USGS is using new applications of hydroacoustic technologies to better understand sediment transport in the Chippewa River and associated effects on commercial navigation.
link

Measuring Suspended-Sediment Concentrations, Grain Sizes and Bedload using Acoustic Doppler Velocity Meters and Echologgers in the Lower Chippewa River, Wisconsin

Sediment from the Chippewa River deposits in the Mississippi River navigation channel, sometimes disrupting commercial barge traffic and resulting in expensive and ecologically disruptive dredging operations. The USGS is using new applications of hydroacoustic technologies to better understand sediment transport in the Chippewa River and associated effects on commercial navigation.
Learn More

SPARROW modeling: Great Lakes, Mississippi River, Ohio River, and Red River Basins

SPARROW models for the Great Lakes, Ohio River, Upper Mississippi River, and Red River Basins predict long-term mean annual loads, yields, concentrations, and source contributions of water, nitrogen, phosphorus, and sediment throughout the Midwest.
link

SPARROW modeling: Great Lakes, Mississippi River, Ohio River, and Red River Basins

SPARROW models for the Great Lakes, Ohio River, Upper Mississippi River, and Red River Basins predict long-term mean annual loads, yields, concentrations, and source contributions of water, nitrogen, phosphorus, and sediment throughout the Midwest.
Learn More

Continuous Groundwater Monitoring Network - Minnesota

This project monitors groundwater level, groundwater temperature and precipitation at hourly intervals at a long-term network of sites throughout Minnesota. These data are collected from surficial and buried aquifers and can be used to estimate groundwater recharge and assist water-availability assessments. Data are corrected to manual measurements at least twice per year and are available through...
link

Continuous Groundwater Monitoring Network - Minnesota

This project monitors groundwater level, groundwater temperature and precipitation at hourly intervals at a long-term network of sites throughout Minnesota. These data are collected from surficial and buried aquifers and can be used to estimate groundwater recharge and assist water-availability assessments. Data are corrected to manual measurements at least twice per year and are available through...
Learn More

SPARROW nutrient modeling: Mississippi/Atchafalaya River Basin (MARB)

SPARROW models for the Mississippi/Atchafalaya River Basin (MARB) predict long-term average loads, concentrations, yields, and source contributions of water, nitrogen, phosphorus, and suspended sediment to the Gulf of Mexico.
link

SPARROW nutrient modeling: Mississippi/Atchafalaya River Basin (MARB)

SPARROW models for the Mississippi/Atchafalaya River Basin (MARB) predict long-term average loads, concentrations, yields, and source contributions of water, nitrogen, phosphorus, and suspended sediment to the Gulf of Mexico.
Learn More

SPARROW nutrient modeling: Binational (US/Canada) models

SPARROW phosphorus and nitrogen models are being developed for the entire Great Lakes Basin and the Upper Midwest part of the U.S., and the Red and Assiniboine River Basin, as part of a Binational project between the USGS and the International Joint Commission (IJC) and National Research Council (NRC) of Canada.
link

SPARROW nutrient modeling: Binational (US/Canada) models

SPARROW phosphorus and nitrogen models are being developed for the entire Great Lakes Basin and the Upper Midwest part of the U.S., and the Red and Assiniboine River Basin, as part of a Binational project between the USGS and the International Joint Commission (IJC) and National Research Council (NRC) of Canada.
Learn More