Skip to main content
U.S. flag

An official website of the United States government

Endocrine Disruption

Filter Total Items: 38

Organic Chemistry Research Core Technology Team

About the Research The Organic Chemistry Research Laboratory Core Technology Team (CTT) as part of the Environmental Health Program focuses on the identification and quantitation of trace level organic contaminants (with a special focus on pesticides) in a wide array of environmental media (water, sediment/soil, plants, biota, etc.).
link

Organic Chemistry Research Core Technology Team

About the Research The Organic Chemistry Research Laboratory Core Technology Team (CTT) as part of the Environmental Health Program focuses on the identification and quantitation of trace level organic contaminants (with a special focus on pesticides) in a wide array of environmental media (water, sediment/soil, plants, biota, etc.).
Learn More

Organic Geochemistry Research Core Technology Team

About the Research The Organic Geochemistry Research Laboratory Core Technology Team (CTT) as part of the Environmental Health Program works to develop targeted and non-targeted analytical methods for the identification and quantitation of chemicals that can impact the health of humans and other organisms, and uses bioassays to screen for receptor inhibition.
link

Organic Geochemistry Research Core Technology Team

About the Research The Organic Geochemistry Research Laboratory Core Technology Team (CTT) as part of the Environmental Health Program works to develop targeted and non-targeted analytical methods for the identification and quantitation of chemicals that can impact the health of humans and other organisms, and uses bioassays to screen for receptor inhibition.
Learn More

Functional and Molecular Bioassay Core Technology Team

About the Research The Functional and Molecular Bioassay Core Technology Team (CTT) as part of the Environmental Health Program utilizes reporter assays, quantitative gene expression analyses, and high-throughput sequencing methods to produce functional endpoints across a broad scope of environmental topics and sample matrices.
link

Functional and Molecular Bioassay Core Technology Team

About the Research The Functional and Molecular Bioassay Core Technology Team (CTT) as part of the Environmental Health Program utilizes reporter assays, quantitative gene expression analyses, and high-throughput sequencing methods to produce functional endpoints across a broad scope of environmental topics and sample matrices.
Learn More

Geospatial Analyses and Applications Core Technology Team

About the Research The Geospatial Analyses and Applications Core Technology Team (CTT) as part of the Environmental Health Program collaborates with teams across USGS to develop and apply geospatial analytical methods to answer broad-scale questions about source-sink and cause-effect relationships between contaminants and vulnerable communities.
link

Geospatial Analyses and Applications Core Technology Team

About the Research The Geospatial Analyses and Applications Core Technology Team (CTT) as part of the Environmental Health Program collaborates with teams across USGS to develop and apply geospatial analytical methods to answer broad-scale questions about source-sink and cause-effect relationships between contaminants and vulnerable communities.
Learn More

Per-and Polyfluoroalkyl Substances (PFAS) Integrated Science Team

Increasing scientific and public awareness of the widespread distribution of per- and poly-fluoroalkyl substances (PFAS) in U.S. drinking-water supplies, aquatic and terrestrial ecosystems, wildlife, and humans has raised many public health and resource management questions that U.S. Geological Survey's (USGS) science can inform. The USGS Environmental Health Program's PFAS Integrated Science Team...
link

Per-and Polyfluoroalkyl Substances (PFAS) Integrated Science Team

Increasing scientific and public awareness of the widespread distribution of per- and poly-fluoroalkyl substances (PFAS) in U.S. drinking-water supplies, aquatic and terrestrial ecosystems, wildlife, and humans has raised many public health and resource management questions that U.S. Geological Survey's (USGS) science can inform. The USGS Environmental Health Program's PFAS Integrated Science Team...
Learn More

Drinking Water and Wastewater Infrastructure Science Team

The team studies toxicants and pathogens in water resources from their sources, through watersheds, aquifers, and infrastructure to human and wildlife exposures. That information is used to develop decision tools that protect human and wildlife health.
link

Drinking Water and Wastewater Infrastructure Science Team

The team studies toxicants and pathogens in water resources from their sources, through watersheds, aquifers, and infrastructure to human and wildlife exposures. That information is used to develop decision tools that protect human and wildlife health.
Learn More

Immunomodulation Science Team

The Immunomodulation Integrated Science Team focuses on contaminant and pathogen exposures in the environment that might influence the immune systems of wildlife and the connection to their shared environment with humans. In collaboration with public-health officials, the Team also addresses potential human-health risks stemming from similar exposures. If actual risks are identified, this Team...
link

Immunomodulation Science Team

The Immunomodulation Integrated Science Team focuses on contaminant and pathogen exposures in the environment that might influence the immune systems of wildlife and the connection to their shared environment with humans. In collaboration with public-health officials, the Team also addresses potential human-health risks stemming from similar exposures. If actual risks are identified, this Team...
Learn More

Refined Model Provides a Screening Tool to Understand Exposure to Contaminants from Incidental Wastewater Reuse

Refinement of the existing national-scale “de facto reuse incidence in our nation’s consumable supply” (DRINCS) model, complemented by field measurements, provides a screening tool to understand human and wildlife exposure to toxicants and pathogens associated with the incidental reuse of treated wastewater in the Shenandoah River watershed. The model results can be accessed in a companion web...
link

Refined Model Provides a Screening Tool to Understand Exposure to Contaminants from Incidental Wastewater Reuse

Refinement of the existing national-scale “de facto reuse incidence in our nation’s consumable supply” (DRINCS) model, complemented by field measurements, provides a screening tool to understand human and wildlife exposure to toxicants and pathogens associated with the incidental reuse of treated wastewater in the Shenandoah River watershed. The model results can be accessed in a companion web...
Learn More

Intersex in Male Smallmouth Bass in the Missisquoi River in Vermont: Understanding Factors that Can Lead to Endocrine Disruption in Field Settings

The presence of testicular oocytes (intersex) in male smallmouth bass ( Micropterus dolomieu ) in the Missisquoi River in Vermont varied over the period of the study and was not related to concentrations of known endocrine disrupting chemicals in the River. Although previous studies have shown linkages between endocrine disrupting chemical exposures and intersex in fish, these results indicate...
link

Intersex in Male Smallmouth Bass in the Missisquoi River in Vermont: Understanding Factors that Can Lead to Endocrine Disruption in Field Settings

The presence of testicular oocytes (intersex) in male smallmouth bass ( Micropterus dolomieu ) in the Missisquoi River in Vermont varied over the period of the study and was not related to concentrations of known endocrine disrupting chemicals in the River. Although previous studies have shown linkages between endocrine disrupting chemical exposures and intersex in fish, these results indicate...
Learn More

Sublethal Effects of Contaminants in Aquatic Food Webs—Research Challenges and Considerations for Future Studies

U.S. Geological Survey (USGS) and academic scientists partnered to identify challenges and provide considerations for future scientific study designs to advance our understanding of the often subtle sublethal effects of contaminants on individuals, populations, communities, and entire aquatic food webs.
link

Sublethal Effects of Contaminants in Aquatic Food Webs—Research Challenges and Considerations for Future Studies

U.S. Geological Survey (USGS) and academic scientists partnered to identify challenges and provide considerations for future scientific study designs to advance our understanding of the often subtle sublethal effects of contaminants on individuals, populations, communities, and entire aquatic food webs.
Learn More

No Evidence of Toxicity to Birds Ingesting Neonicotinoid-Coated Wheat Seeds During Controlled Laboratory Study

Scientists determined what happens to the neonicotinoid insecticide, imidacloprid, on coated wheat seeds once ingested by Japanese quail (Coturnix japonica)—a model species for free-range, seed-eating, upland game birds. Imidacloprid was found to be rapidly adsorbed, metabolized, and excreted, and resulted in no overt signs of toxicity during a controlled laboratory study.
link

No Evidence of Toxicity to Birds Ingesting Neonicotinoid-Coated Wheat Seeds During Controlled Laboratory Study

Scientists determined what happens to the neonicotinoid insecticide, imidacloprid, on coated wheat seeds once ingested by Japanese quail (Coturnix japonica)—a model species for free-range, seed-eating, upland game birds. Imidacloprid was found to be rapidly adsorbed, metabolized, and excreted, and resulted in no overt signs of toxicity during a controlled laboratory study.
Learn More

Can There be Unintended Benefits when Wastewater Treatment Infrastructure is Upgraded?

Science from the U.S. Geological Survey (USGS) and other entities has shown that a mixture of natural and synthetic estrogens and other similar chemicals are discharged from wastewater treatment plants (WWTPs) to streams and rivers.
link

Can There be Unintended Benefits when Wastewater Treatment Infrastructure is Upgraded?

Science from the U.S. Geological Survey (USGS) and other entities has shown that a mixture of natural and synthetic estrogens and other similar chemicals are discharged from wastewater treatment plants (WWTPs) to streams and rivers.
Learn More