Skip to main content
U.S. flag

An official website of the United States government

Evaluation of debris-flow building damage forecasts

April 29, 2024

Reliable forecasts of building damage due to debris flows may provide situational awareness and guide land and emergency management decisions. Application of debris-flow runout models to generate such forecasts requires combining hazard intensity predictions with fragility functions that link hazard intensity with building damage. In this study, we evaluated the performance of building damage forecasts for the 9 January 2018 Montecito postfire debris-flow runout event, in which over 500 buildings were damaged. We constructed forecasts using either peak debris-flow depth or momentum flux as the hazard intensity measure and applied each approach using three debris-flow runout models (RAMMS, FLO-2D, and D-Claw). Generated forecasts were based on averaging multiple simulations that sampled a range of debris-flow volume and mobility, reflecting typical sources and magnitude of pre-event uncertainty. We found that only forecasts made with momentum flux and the D-Claw model could correctly predict the observed number of damaged buildings and the spatial patterns of building damage. However, the best forecast only predicted 50 % of the observed damaged buildings correctly and had coherent spatial patterns of incorrectly predicted building damage (i.e., false positives and false negatives). These results indicate that forecasts made at the building level reliably reflect the spatial pattern of damage but do not support interpretation at the individual building level. We found the event size strongly influences the number of damaged buildings and the spatial pattern of debris-flow depth and velocity. Consequently, future research on the link between precipitation and the volume of sediment mobilized may have the greatest effect on reducing uncertainty in building damage forecasts. Finally, because we found that both depth and velocity are needed to predict building damage, comparing debris-flow models against spatially distributed observations of building damage is a more stringent test for model fidelity than comparison against the extent of debris-flow runout.

Publication Year 2024
Title Evaluation of debris-flow building damage forecasts
DOI 10.5194/nhess-24-1459-2024
Authors Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, Jason W. Kean
Publication Type Article
Publication Subtype Journal Article
Series Title Natural Hazards and Earth System Sciences
Index ID 70253230
Record Source USGS Publications Warehouse
USGS Organization Geologic Hazards Science Center - Seismology / Geomagnetism
Was this page helpful?