Skip to main content
U.S. flag

An official website of the United States government

Hydrogeologic framework, water levels, and selected contaminant concentrations at Valmont TCE Superfund Site, Luzerne County, Pennsylvania, 2020

January 1, 2021

The Valmont TCE Superfund Site, Luzerne County, Pennsylvania is underlain by fractured and folded sandstones and shales of the Pottsville and Mauch Chunk Formations, which form a fractured-rock aquifer recharged locally by precipitation. Industrial activities at the former Chromatex Plant resulted in trichloroethene (TCE) contamination of groundwater at and near the facility, which was identified in 1987 and led to listing as a Superfund site by the U.S. Environmental Protection Agency (EPA) in 1989. To address the problem of TCE concentrations in nearby residential wells that exceed the maximum contaminant level (MCL) of 5 micrograms per liter (μg/L), alternate water supplies were provided. A 2015 review of initial characterization and subsequent remediation by the EPA identified the need for an updated understanding of the complex hydrogeology and the conceptual site model. Additional contaminants present in groundwater at the site include some other volatile organic compounds (VOCs) and per- and polyfluoroalkyl substances (PFAS), predominantly consisting of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) present in concentrations that exceeded the EPA Health Advisory (HA) level of 5 nanograms per liter (ng/L) for combined PFOA and PFOS.

In response to a request from the EPA in 2019, the U.S. Geological Survey (USGS) prepared cross sections and maps to provide more information about the hydrogeologic framework at and near the site and assist in improving the conceptual site model using water level and contaminant data collected by the EPA in 2020. The cross sections present lithologic correlations from available geophysical logs collected in wells from 2002 to 2014; they show alternating intervals of relatively elevated and reduced natural gamma activity that correspond to changes in lithology, with water-bearing zones and well screens commonly located at lithologic contacts, sometimes near thin coal seams. Water-bearing zones commonly are associated with fractures at or near lithologic contacts but also may be associated with fractures at or near apparent faulting. Recent (March 2020) water-level data shown on cross sections and maps indicate large downward vertical gradients and apparent radial gradients laterally to the northeast, northwest, and southwest that generally following topography. Recent (February to March 2020) data for TCE groundwater concentration shown on cross sections and maps indicate the highest TCE concentrations (greater than 3,000 μg/L and as much as 75,000 μg/L) and combined PFOA and PFOS concentrations (greater than 1,000 ng/L and up to at least 2,350 ng/L) are from shallow (less than 60 feet [ft] below land surface [bls]) and intermediate depth (60 to 100 ft bls) wells near the center of the former Chromatex Plant. TCE and PFAS (as combined PFOA and PFOS) contamination is present at greater depths, as much as 304 ft bls, as evidenced by samples collected from one well (a reconstructed former production well) near the plant, that contained concentrations of about 240 μg/L and 508 ng/L, respectively. The 2020 data also indicate that TCE and PFAS concentrations which exceed drinking-water MCL or HA levels are present in groundwater depths of less than 200 ft in an area that extends predominantly in a northeast direction from the former Chromatex Plant, and is apparently influenced by hydraulic gradients, lithology, and geologic structure.

Publication Year 2021
Title Hydrogeologic framework, water levels, and selected contaminant concentrations at Valmont TCE Superfund Site, Luzerne County, Pennsylvania, 2020
DOI 10.3133/ofr20211093
Authors Lisa A. Senior, Alex R. Fiore, Philip H. Bird
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2021-1093
Index ID ofr20211093
Record Source USGS Publications Warehouse
USGS Organization New Jersey Water Science Center; Pennsylvania Water Science Center