Skip to main content
U.S. flag

An official website of the United States government

Nonlinear reaction–diffusion process models improve inference for population dynamics

November 3, 2019

Partial differential equations (PDEs) are a useful tool for modeling spatiotemporal dynamics of ecological processes. However, as an ecological process evolves, we need statistical models that can adapt to changing dynamics as new data are collected. We developed a model that combines an ecological diffusion equation and logistic growth to characterize colonization processes of a population that establishes long-term equilibrium over a heterogeneous environment. We also developed a homogenization strategy to statistically upscale the PDE for faster computation and adopted a hierarchical framework to accommodate multiple data sources collected at different spatial scales. We highlighted the advantages of using a logistic reaction component instead of a Malthusian component when population growth demonstrates asymptotic behavior. As a case study, we demonstrated that our model improves spatiotemporal abundance forecasts of sea otters in Glacier Bay, Alaska. Furthermore, we predicted spatially varying local equilibrium abundances as a result of environmentally driven diffusion and density-regulated growth. Integrating equilibrium abundances over the study area in our application enabled us to infer the overall carrying capacity of sea otters in Glacier Bay, Alaska.

Publication Year 2020
Title Nonlinear reaction–diffusion process models improve inference for population dynamics
DOI 10.1002/env.2604
Authors Xinyi Lu, Perry J. Williams, Mevin Hooten, James A. Powell, Jamie N. Womble, Michael R. Bower
Publication Type Article
Publication Subtype Journal Article
Series Title Environmetrics
Index ID 70227771
Record Source USGS Publications Warehouse
USGS Organization Coop Res Unit Seattle