Jung kuan (Ernie) Liu
Ernie is part of NGTOC working as a Research Scientist in CEGIS.
Science and Products
3DEPPCC: An automated DL-based point cloud classification tool for 3DEP point clouds
This toolkit will enhance 3DEP classification accuracy and automation, broadening its usability to external users
Automated deep learning-based point cloud classification on USGS 3DEP lidar data using transformer
The goal of the U.S. Geological Survey’s (USGS) 3D Elevation Program (3DEP) is to facilitate the acquisition of nationwide lidar data. Although data meet USGS lidar specifications, some point cloud tiles include noisy and incorrectly classified points. The enhanced accuracy of classified point clouds can improve support for many downstream applications such as hydrologic analysis, urban planning,
Authors
Jung-Kuan (Ernie) Liu, Rongjun Qin, Shuang Song
Evaluation of classified ground points from National Agriculture Imagery program photogrammetrically derived point clouds
Studies have shown that digital surface models and point clouds generated by the United States Department of Agriculture’s National Agriculture Imagery Program (NAIP) can measure basic forest parameters such as canopy height. However, all measured forest parameters from these studies are evaluated using the differences between NAIP digital surface models (DSMs) and available lidar digital terrain
Authors
Jung-Kuan (Ernie) Liu, Samantha Arundel, Ethan J. Shavers
Assessing the utility of uncrewed aerial system photogrammetrically derived point clouds for land cover classification in the Alaska North Slope
Uncrewed aerial systems (UASs) have been used to collect “pseudo field plot” data in the form of large-scale stereo imagery to supplement and bolster direct field observations to monitor areas in Alaska. These data supplement field data that is difficult to collect in such a vast landscape with a relatively short field season. Dense photogrammetrically derived point clouds are created and are faci
Authors
Jung-Kuan (Ernie) Liu, Rongjun Qin, Samantha Arundel
Remote sensing-based 3D assessment of landslides: A review of the data, methods, and applications
Remote sensing (RS) techniques are essential for studying hazardous landslide events because they capture information and monitor sites at scale. They enable analyzing causes and impacts of ongoing events for disaster management. There has been a plethora of work in the literature mostly discussing (1) applications to detect, monitor, and predict landslides using various instruments and image anal
Authors
Hessah Albanwan, Rongjun Qin, Jung-Kuan (Ernie) Liu
Science and Products
3DEPPCC: An automated DL-based point cloud classification tool for 3DEP point clouds
This toolkit will enhance 3DEP classification accuracy and automation, broadening its usability to external users
Automated deep learning-based point cloud classification on USGS 3DEP lidar data using transformer
The goal of the U.S. Geological Survey’s (USGS) 3D Elevation Program (3DEP) is to facilitate the acquisition of nationwide lidar data. Although data meet USGS lidar specifications, some point cloud tiles include noisy and incorrectly classified points. The enhanced accuracy of classified point clouds can improve support for many downstream applications such as hydrologic analysis, urban planning,
Authors
Jung-Kuan (Ernie) Liu, Rongjun Qin, Shuang Song
Evaluation of classified ground points from National Agriculture Imagery program photogrammetrically derived point clouds
Studies have shown that digital surface models and point clouds generated by the United States Department of Agriculture’s National Agriculture Imagery Program (NAIP) can measure basic forest parameters such as canopy height. However, all measured forest parameters from these studies are evaluated using the differences between NAIP digital surface models (DSMs) and available lidar digital terrain
Authors
Jung-Kuan (Ernie) Liu, Samantha Arundel, Ethan J. Shavers
Assessing the utility of uncrewed aerial system photogrammetrically derived point clouds for land cover classification in the Alaska North Slope
Uncrewed aerial systems (UASs) have been used to collect “pseudo field plot” data in the form of large-scale stereo imagery to supplement and bolster direct field observations to monitor areas in Alaska. These data supplement field data that is difficult to collect in such a vast landscape with a relatively short field season. Dense photogrammetrically derived point clouds are created and are faci
Authors
Jung-Kuan (Ernie) Liu, Rongjun Qin, Samantha Arundel
Remote sensing-based 3D assessment of landslides: A review of the data, methods, and applications
Remote sensing (RS) techniques are essential for studying hazardous landslide events because they capture information and monitor sites at scale. They enable analyzing causes and impacts of ongoing events for disaster management. There has been a plethora of work in the literature mostly discussing (1) applications to detect, monitor, and predict landslides using various instruments and image anal
Authors
Hessah Albanwan, Rongjun Qin, Jung-Kuan (Ernie) Liu