

**USGS National Ground Water Monitoring Network Final Technical Report -
St. Johns River Water Management District**

A. Cover Page

1. Award Number: G22AS00002

2. Agency Name: St Johns River Water Management District

3. Project Title: St. Johns River Water Management District
New Data Provider to NGWMN

4. Authors:
Michael Daly
Technical Program Manager
St. Johns River Water Management District
Bureau of Water Resource Information
4049 Reid Street
Palatka, FL 32177
386-329-4494, mdaly@sjrwmd.com

Mitch Valerio
Water Resource Data Manager
St. Johns River Water Management District
Bureau of Water Resource Information
4049 Reid Street
Palatka, FL 32177
386-329-4172, mvalerio@sjrwmd.com

Matt Watkins
Data Quality Assurance Specialist III
St. Johns River Water Management District
Bureau of Water Resource Information
4049 Reid Street
Palatka, FL 32177
386-329-4199, mwatkins@sjrwmd.com

5. Start Date July 15, 2022

6. End Date: July 14, 2024

7. Date of Final Report November 05, 2024

B.

1. Project Accomplishments

The proposed and awarded Budget Year 1 (July 15, 2022 – July 14, 2023) work plan consisted of Objective 2 part A – Maintain persistent data services to the NGWMN and Objective 6 – Purchase equipment to support continuous water level data collection. 50 sites from a previous award were monitored and data services were maintained with the NGWMN. An additional 18 sites were selected for the NGWMN; those sites were classified into Subnetworks and Monitoring categories. All the required elements were provided for the selected sites during budget year 2. 33 of the 50 sites already on the NGWMN had outdated equipment that needed replacement with new pressure transducers to continue the high quality water level data collection. The Progress Report was submitted in May 2023.

Budget Year 2 (July 15, 2023 – July 14, 2024) work plan consisted solely of Objective 2 part A – Maintain persistent data service to the NGWMN. The list of 50 existing sites with the addition of 18 new sites has been kept up to date. Site information on all 68 sites has been kept up to date in the well registry as new data have become available. Web services connection to the NGWMN Portal have been maintained. Updates to web services were not necessary as there were no new elements required. This Final Technical Report documenting persistent data service activities for this project is submitted here to document the completion of all proposed activities for this two-year grant proposal.

2. Detailed Description of work accomplished under each objective.

- a. Objective 2, Part A - Support Persistent Data Services – Maintain Database Connections and Add New Sites (Years 1 and 2)**
 1. Keep the list of sites in NGWMN Monitoring Location Registry up to date and add new sites:
 - The monitoring location registry has been updated as necessary according to the *Populating the NGWMN Monitoring Location Registry* tip sheet. If it should become necessary, inactive sites would be removed. New qualified sites were added to the NGWMN monitoring location registry using the batch uploader. Eighteen new sites within the Upper Floridan aquifer have been selected based on their period of record, overall quality of data, and geographic separation from one another. A map of the candidate wells appears in Appendix A, [Figure 1](#). A map of the selected well appears in Appendix A, [Figure 2](#). The NGWMN Framework document, the *Well Selection Criteria for Water Levels* and the *Minimum Data Requirements* tip sheets, and the *Well Density* spreadsheet were used as guidance during this process.
 2. Classify new sites according to Subnetwork and Monitoring Categories:
 - Sites are being classified as described in the *NGWMN Framework* document and *Defining the Subnetwork and Defining Monitoring Categories* tip sheets.
 3. Populate data elements for new sites in agency databases and the NGWMN

Monitoring Location Registry:

- Data is being gathered in the Monitoring Location Registry and through web services as described in the *Minimum Data Requirements* and the *Populating the NGWMN*.
- 4. Keep site information on existing sites updated in the Monitoring Location Registry as new data becomes available, add new field in existing database:
 - In addition to routine updates, a new field within the existing district database has been added to help track which sites are part of the NGWMN portal.
- 5. Maintain web services connections to the NGWMN Portal:
 - As part of the KISTERS web services module for Hydstra, an annual maintenance fee of \$2,600 is required to maintain this service.
- 6. Update web services to serve any new required elements:
 - Because this scenario did not occur, no work was performed.
- 7. Review NGWMN Data Portal Data Provider pages for your agency and provide updates to the NGWMN, as needed:
 - Data Provider pages have been reviewed on a monthly basis, and any issues have been addressed in a timely manner.
- 8. Prepare Final Technical Report:
 - The intent of this document is to complete this item.

b. Objective 6 – Purchase Equipment to Support Continuous Water Level Data Collection (Years 1 and 2)

- 1. Purchase the equipment:
 - All equipment was quoted, purchased, and obtained.
- 2. Install the equipment:
 - Equipment has been installed in the field following a service trip approach that combines installation work based on geographic zones. A table of these sites is included in Appendix B, [Table 2](#). A map is included in Appendix A, [Figure 3](#). These items remain unchanged from the initial project proposal.
- 3. Prepare Final Technical Report:
 - The intent of this document is to complete this item.

c. Description of work done to support the NGWMN as a data provider for each objective

- Work done under Objective 2 and Objective 6 has been described above, in the detailed description of work accomplished under each objective.

d. Describe any data-collection, well-maintenance, or well-drilling activities during the project.

- During the project, regular routine maintenance and manual data-collection were performed as described below in [Appendix C](#). There were no well-drilling activities during the project.

e. Describe any methods used for data collection.

- The methods are included in [Appendix C](#).

f. Describe the Procedures used to quality assure any data collected before it was entered into agency databases or to the NGWMN Well Registry.

- The methods are included in [Appendix C](#).

- g. Table listing any new or replacement wells added to the NGWMN. Include the Principal Aquifer, well depth, and the NGWMN site number. If the well as a replacement well, list the site number for the previous well.**

 - The table is in Appendix B, [Table 1](#).
- h. Description of any updates made to web services during period of award.**

 - No updates were made to web services during period of award.
- i. Description of any problems encountered in serving data to the NGWMN data portal.**

 - The only problem we encountered was internal. Staffing shortages caused a delay in selecting the new site to add to the NGWMN Well Registry, but the work was completed before the end date of the two-year contract.
- j. Well construction diagrams for any new wells.**

 - No new wells were drilled for this project.

Appendix A: Figures

Upper Floridan Aquifer Candidate Wells

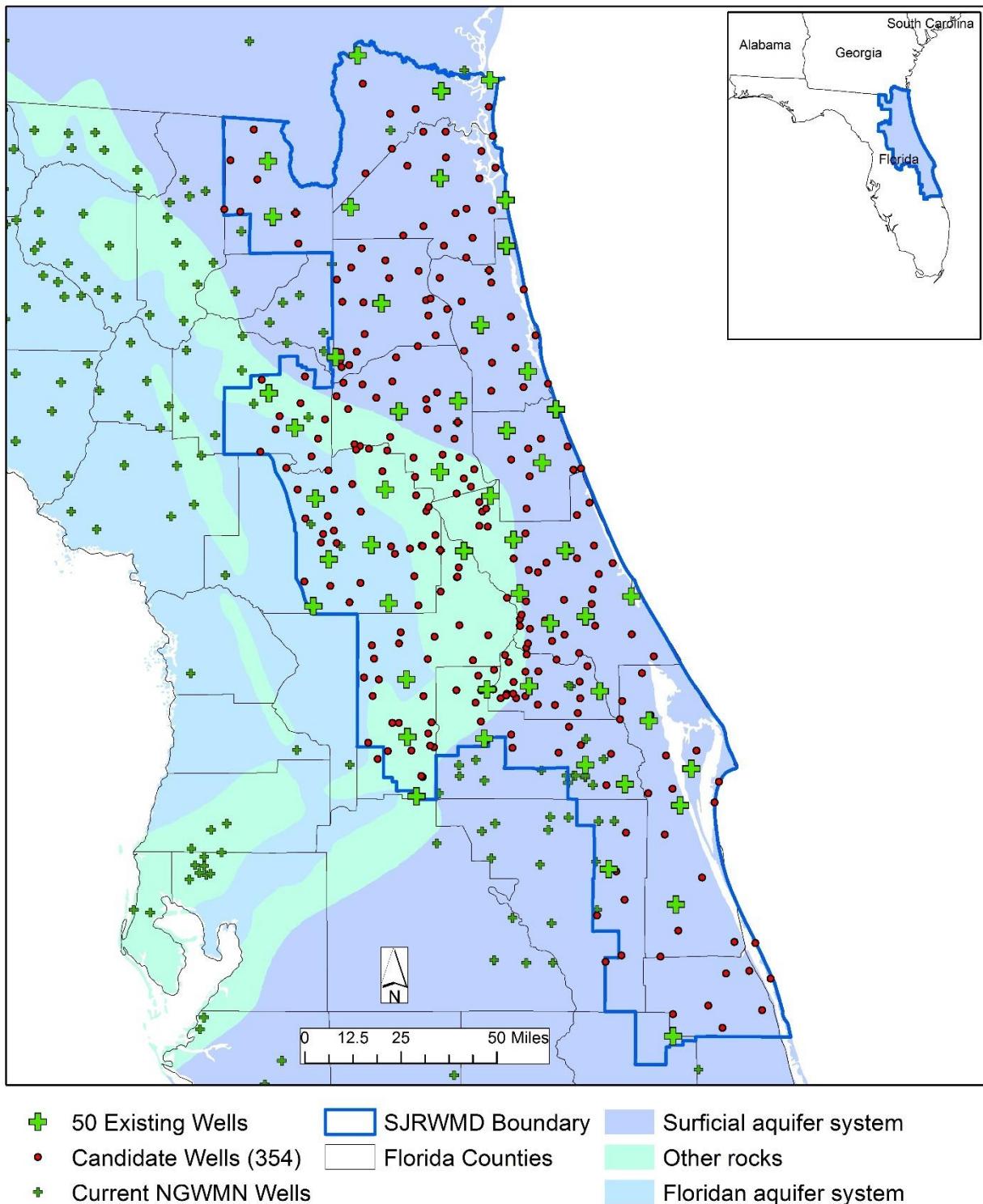


Figure 1: Map of the three hundred fifty-four candidate wells in the Upper Floridan aquifer. (Objective 2)

18 Selected St. Johns River Water Management District Wells for NGWMN

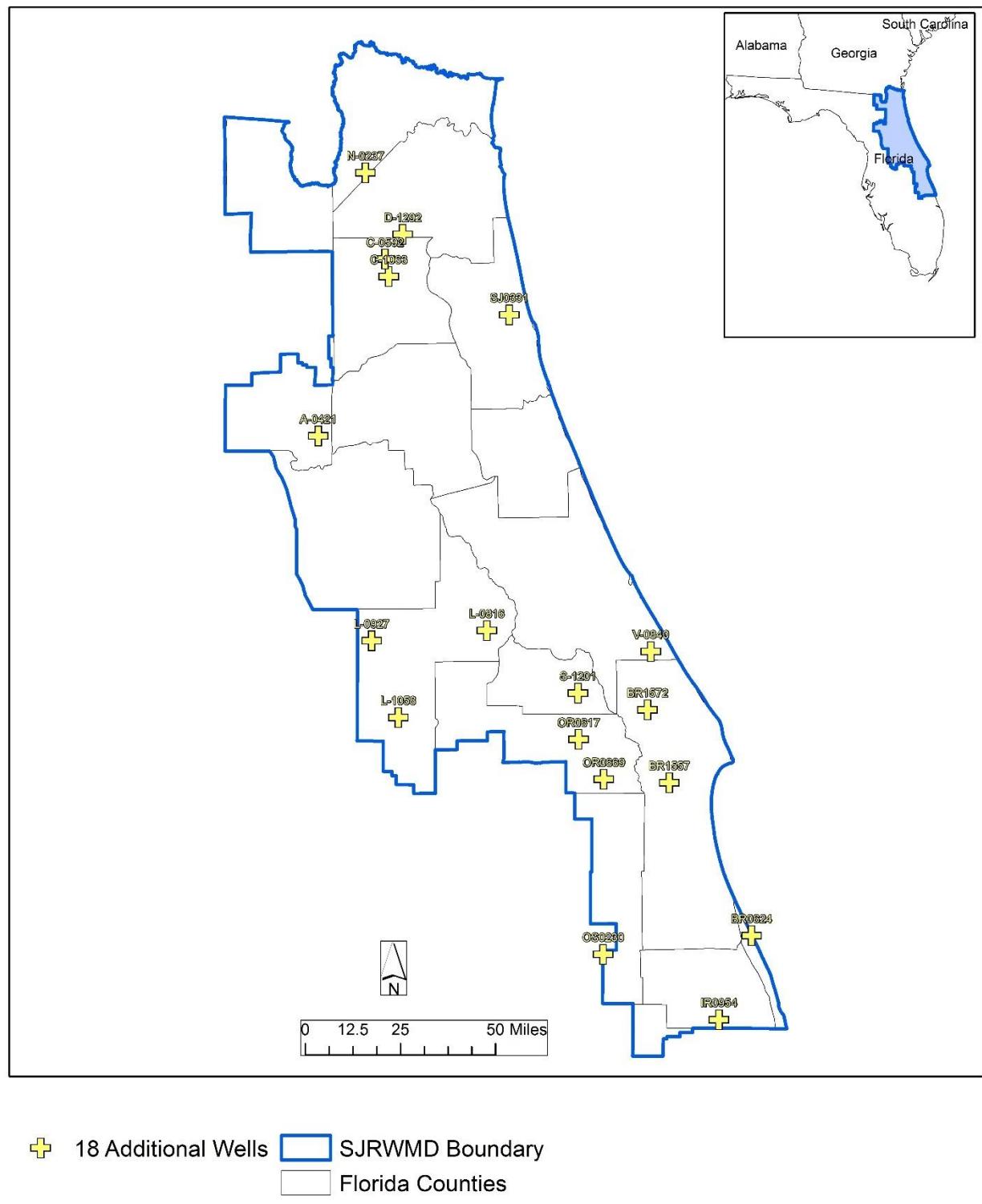


Figure 2: Map of eighteen new sites added to the NGWMN. (Objective 2)

Well Sites for Equipment Replacement

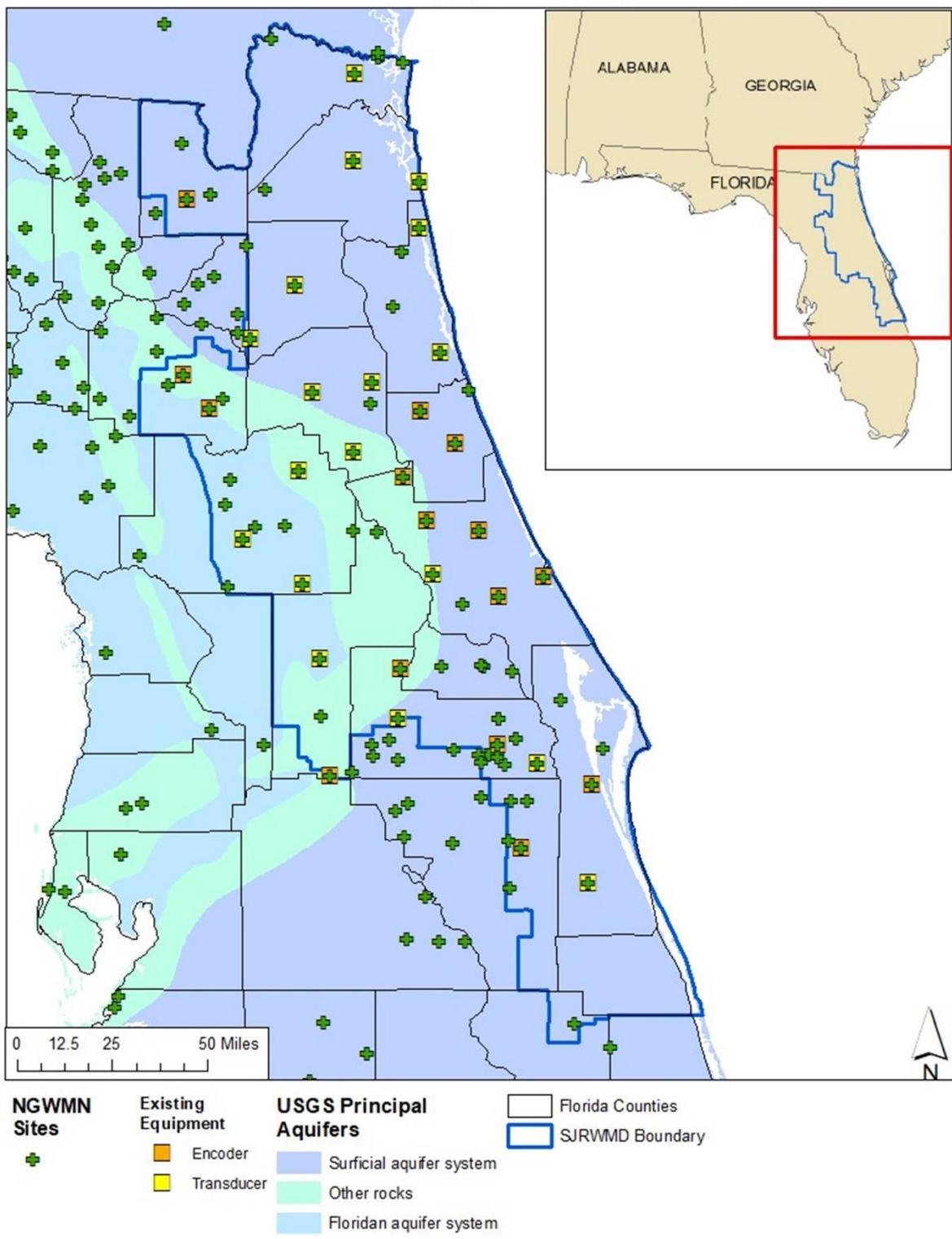


Figure 3: Map of the thirty-three sites where aging transducers or shaft encoders have been replaced. (Objective 6)

Appendix B: Tables

Table 1: Table of Eighteen Wells added to the NGWMN.

Number	NGWMN Site number	Principal Aquifer	Well Depth (ft)	Site Name	Well Name
1	SJRWMD:01150480	Floridan aquifer system	650	Sebastian SP	BR0624
2	SJRWMD:03160327	Floridan aquifer system	480	SJWCD Wells	IR0954
3	SJRWMD:10191166	Floridan aquifer system	392	Adams Rch	OS0230
4	SJRWMD:01700792	Floridan aquifer system	190	Cocoa HS	BR1557
5	SJRWMD:11752251	Floridan aquifer system	315	Cocoa WF Site 13T	OR0669
6	SJRWMD:09552145	Floridan aquifer system	550	Long Brch	OR0617
7	SJRWMD:05301652	Floridan aquifer system	228	Astronaut HS	BR1572
8	SJRWMD:09532142	Floridan aquifer system	140	Snow Hill	S-1201
9	SJRWMD:11492169	Floridan aquifer system	195	Migor Shiloh Rd	V-0840
10	SJRWMD:35215282	Floridan aquifer system	230	Groveland FS 94	L-1058
11	SJRWMD:27354792	Floridan aquifer system	195	Lk Griffin SP	L-0927
12	SJRWMD:17043609	Floridan aquifer system	220	Seminole SF New	L-0816
13	SJRWMD:19794579	Floridan aquifer system	132	Lochloosa Well	A-0421
14	SJRWMD:17943646	Floridan aquifer system	527	Woodlawn Rd	SJ0331
15	SJRWMD:18593802	Floridan aquifer system	450	Lk Asbury Wells	C-1063
16	SJRWMD:19334463	Floridan aquifer system	540	Tynes ES	C-0592
17	SJRWMD:18013659	Floridan aquifer system	621	Indian Trls	D-1292
18	SJRWMD:10101425	Floridan aquifer system	500	Carey State Forest	N-0237

Table 2: Table of thirty-three transducers installed to replace aging equipment.

NGWMN Site Number	Service Trip	Principal Aquifer	Well Depth	Installation Year	Instrument Type	Length of Cable Required (ft.)
SJRWMD:00260030	Palatka West	Floridan aquifer system	440	2010	Encoder	150
SJRWMD:05140962	Orlando (Overnight)	Floridan aquifer system	520	2005	Encoder	15
SJRWMD:05213761	Orlando (Overnight)	Floridan aquifer system	375	2011	Encoder	50
SJRWMD:05401025	Orlando (Overnight)	Floridan aquifer system	200	2017	Transducer	15
SJRWMD:05681072	Palatka East	Floridan aquifer system	121	2005	Encoder	20
SJRWMD:05831097	Orlando (Overnight)	Floridan aquifer system	350	2015	Transducer	50
SJRWMD:06771654	Palatka West	Floridan aquifer system	90	2017	Transducer	100
SJRWMD:06901676	Palatka East	Floridan aquifer system	124	2017	Transducer	20
SJRWMD:07271706	Palatka East	Floridan aquifer system	124	2003	Encoder	20
SJRWMD:07441716	Palatka West	Floridan aquifer system	300	2017	Transducer	50
SJRWMD:07801206	Jacksonville (Overnight)	Floridan aquifer system	238	2009	Transducer	30
SJRWMD:09272094	Orlando (Overnight)	Floridan aquifer system	350	2017	Transducer	50
SJRWMD:09642159	Orlando (Overnight)	Floridan aquifer system	390	2016	Transducer	20
SJRWMD:09750965	Jacksonville (Overnight)	Floridan aquifer system	825	2010	Encoder	130
SJRWMD:09800988	Jacksonville (Overnight)	Floridan aquifer system	585	2007	Transducer	10
SJRWMD:09840996	Jacksonville (Overnight)	Floridan aquifer system	905	2016	Transducer	10
SJRWMD:12512446	Orlando (Overnight)	Floridan aquifer system	180	2001	Encoder	15

SJRWMD:14661279	Orlando (Overnight)	Floridan aquifer system	222	2001	Encoder	30
SJRWMD:18403749	Palatka West	Floridan aquifer system	240	2016	Transducer	50
SJRWMD:19564474	Orlando (Overnight)	Floridan aquifer system	200	2003	Encoder	20
SJRWMD:19754567	Palatka West	Floridan aquifer system	190	2005	Encoder	50
SJRWMD:20014731	Jacksonville (Overnight)	Floridan aquifer system	420	2017	Transducer	30
SJRWMD:28354972	Jacksonville (Overnight)	Floridan aquifer system	750	2007	Transducer	10
SJRWMD:28364975	Jacksonville (Overnight)	Floridan aquifer system	410	2007	Transducer	10
SJRWMD:28885109	Orlando (Overnight)	Floridan aquifer system	385	2013	Transducer	10
SJRWMD:30063052	Orlando (Overnight)	Floridan aquifer system	155	2001	Encoder	75
SJRWMD:30272814	Palatka West	Floridan aquifer system	135	2017	Transducer	75
SJRWMD:30292825	Orlando (Overnight)	Floridan aquifer system	138	2010	Encoder	20
SJRWMD:30382876	Palatka East	Floridan aquifer system	160	1998	Encoder	20
SJRWMD:70031384	Orlando (Overnight)	Floridan aquifer system	155	2000	Encoder	15
SJRWMD:70078104	Palatka West	Floridan aquifer system	227	2017	Transducer	100
SJRWMD:70560417	Palatka East	Floridan aquifer system	210	2002	Encoder	20
SJRWMD:70591581	Palatka East	Floridan aquifer system	543	2015	Transducer	30

Appendix C: Data collection and data management protocols

1. General Site Maintenance Procedures

Overview:

All data collection sites are maintained to ensure that good quality data is collected. Examples of site maintenance include calibration of sensors on scheduled trip runs, removal of debris and excessive vegetation, inspection of wiring and metal components for corrosion, keeping steel wells clean and painted blue, and keeping gate valves lubricated for easy operation. Any Non-access sites an email must be submitted to the Data Collection Supervisor on the day of the visit reporting the reason the site was not visited.

General Procedures:

1. Field folder: Includes a copy of the site description, level summary and an updated picture printed from the Electronic Content Management (ECM) database. If any changes occur at a site, make note and update the ECM database within 7 working days of completing the trip run.
2. Every site must have a WRI Data Collection sticker.
3. Inspect for wasp nests and other safety hazards.
4. Inspect ground rod, clamp and wire. Look for and fix loose connections and corrosion.
5. Properly note all discrepancies on QA form. (See SOP on QA forms)
6. Connect to data-logger and start filling out QA form.
7. If rain gage present, perform maintenance on TB 3 rain gauge. (See SOP for procedure)
8. Perform service to one sensor at a time. (See SOP for procedure) from the "As Found" to the "As Left" reading. (See SOP on measuring water level procedure) Note as found reading before opening shelter. Clean inside and outside of shelter prior to "As Left."
9. Service the battery, spray the terminals with protective coating if needed. Inspect connections for corrosion & deteriorated insulation.
10. Inspect desiccant packs in the data-logger box to ensure that they are providing sufficient moisture protection, change as needed. (Put current date on new ones)
11. Wells that have KPSI transducers will need the desiccant in the tubes changed. Desiccant must be fully blue colored. Wells that have Rittmeyer transducers will need to have the small desiccant packages changed on each visit.
12. Clean solar panel and remove obstructions, if any to ensure sufficient sunlight.
13. Lubricate locks (Should be WRI brass locks), hasp and hinges as needed.
14. Check QA form to ensure all information is completed.
15. Prior to leaving site be sure all wires are connected, and shelters are closed and locked.
16. Pick up trash, or any other materials or equipment not being used at site.
17. Vegetation control: Remove the excess vegetation with the Weed Eater and spray weed control around the rain gage stand, well stations, antenna mast, evaporation pan, and the chain link fences.

2. Bi-Annual Site Visit Procedures

Overview:

All data collection sites must be visited during their scheduled routine trip run, unless it is within 40 days from the start of the trip, which is noted in the Canvas report for you.

Procedures:

1. All sites must be visited during the scheduled trip. Every attempt must be made to access a site. If a site is ultimately inaccessible, an Electronic Quality Assurance (EQA) form must be submitted clearly documenting the reason, including photos.
2. Surroundings, review for any unsafe conditions and vegetation growth.
3. All trash, or any other materials or equipment not being used at site must be removed.
4. Vegetation and growth must be maintained within a 10ft radius of each station (weed eating or spraying)
5. Ensure SDMS site memo(s) are up to date with correct documentation about the site, directions, special needs and access requirements. Document any required changes or updates on paper files or if time allows, through Canvas.
6. Document any access issues or other needed work orders (Spray, Bush hog, Clear) through Canvas. Make all efforts to gain access, update Contact information if needed.
7. Properly connect laptop to data logger and start filling out EQA form.
8. Enclosure data logger boxes - clean, seal and supply with fresh desiccant packs (as needed). Ensure all equipment, wiring, cables, ground rod are properly mounted. Any discrepancies must be noted; repair or correct if time permits.
9. Check Power system: solar panel, charge controller, battery, wires and terminal strips must be cleaned from debris and corrosion.
10. Perform maintenance and calibration to one sensor at a time. All sensors must be calibrated and maintained as described in the applicable SOP standards. (SOP 102-22, SOP 141-22, SOP 151-22)
11. All structure and hardware materials must be secure, lubed and updated. (Not rotten or rusted)
12. Check EQA form to ensure all information is completed.
13. Prior to leaving site ensure all wires are connected and shelters are closed and locked.
14. Pictures should be taken for the following conditions:
 - a. Unsafe
 - b. Bush hogging
 - c. Weed Control
 - d. Tree trimming
 - e. Changes to the site

Additional Yearly Service Procedures:

1. Devices used for manual measurement are calibrated yearly.
 - a. Electronic measuring tapes
 - b. Digital Pressure Gauge
 - c. PSP calibrator Hand held
2. Enclosure and Data Logger
 - a. The desiccant packs are replaced (annually at least).
 - b. Inside is cleaned and weather seal is wiped down.
 - c. The Lithium battery is checked in the data logger, if below 3.0 volts replace the data logger.
3. Battery, Solar and regulator
 - a. Solar panel is washed.

- b. Check the azimuth to ensure facing due south.
- c. Check charge controller for corrosion and sprayed with corrosion spray.
- d. Battery terminals are sprayed and recoated.

4. Wires and cables:

- a. Inspect from connection to connection.
- b. Threaded fittings, ensure for tight fit.
- c. Secure properly.

5. Monitoring wells and Stilling wells with encoders.

- a. Use a flashlight to look down the well to ensure no obstructions,
- b. Inspect the float tape for any kinks or twists. (Replace if so)
- c. Clean float tape with a wet towel two to three feet each side of wheel.

6. Monitoring wells and stilling wells with transducers.

- a. Ensure transducer is properly secured.

7. Monitoring flowing wells.

- a. All steel gate valves are lubricated at shaft and turned.
- b. Note if Valves need to be painted with Rust-Oleum paint.

8. Staff gages with clear hoses or PVC.

- a. All hoses or PVC are drained, cleaned and readable.
- b. Clean staff gauge

9. Measuring Points, Datums and elevations

- a. Verify that measuring point/datum description matches (EQA/SDMS)
- b. Ensure that measuring points are accessible and clearly marked
- c. Verify that reference marks, reference points, benchmarks etc. have not been disturbed

10. Gate valves

- a. Quarter to half turn
- b. Lubricate
- c. Document repair/replacement needs for work order to Hydrogeo Services group

3. Field Manual Measurement Procedure

Overview:

The documentation identifies the measuring device that is used for the purpose to prove that the data collection instrument is working properly. This will also keep track of how long the measuring device were used and when it needs to be tested for re-calibration check. The instrument used must be identify by its serial number documented on the Quality Assurance forms, Discharge forms Miscellaneous field note forms.

Procedure:

1. Steel Tape and Chalk:

- a. Chalk approx. 2-3 feet of tape at the beginning of the tape.
- b. Lower tape into well. Hold tape at MP elevation (Hold Value).
- c. Pull tape out of well and read water line on tape (Cut Value).
- d. Subtract Cut point from Hold point. This will give you your Down To Water (DTW). Document in EQA.
- e. To ensure the water level is correctly measured, this procedure must be repeated until water level readings are within 0.02.

- f. Repeat steps 2-4 (do not hold the same point).
- g. If the two readings are more than +/- 0.02 hundredths a third reading is required and repeated until two readings are within +/- 0.02 hundredths.

2. Electronic Measuring Tape:

- a. Note: The sensitivity adjustment is designed to compensate for variations in the conductivity of the water. For higher conductivity water, use a lower sensitivity setting. Readings can be verified with a steel tape and chalk. Water with conductivity outside of the threshold of the electric tape should be measured with a steel tape and chalk.
- b. Set Electronic Tape sensitivity to according to manufactures directions.
- c. Lower probe down into well until it beeps and take reading at MP.
- d. Lift probe at least three feet, then document the depth to water on EQA form and time in EST.
- e. For the second measurement repeat steps 2 & 3
- f. If the two readings differ more than +/- 0.02 a reading from the data logger is required to determine if the water level is moving.
- g. If water level has changed, continue making manual measurements until you get two measurements within +/- 0.02

3. Digital Pressure Gauge:

- a. Pressure gauge must be sent for calibration every two years.
- b. If the water level is above 8 feet and you cannot use ruler & hose, then use your pressure gauge.
- c. Attach the clear hose to the well fitting.
- d. Turn on Pressure Gauge and push "zero" button while holding at measuring point.
- e. Get WL reading from logger and document "as found" value on EQA form.
- f. Turn on water going thru clear hose to evacuate any air in line.
- g. Evacuate any air in the Pressure Gauge by using the flowing water from the clear hose.
- h. Hold or set Pressure Gauge at its calibrated point at the MP elevation until pressure gauge reading stabilizes.
- i. NOTE: IF WELL IS NOT VENTED THEN ANOTHER WATER LEVEL READING FROM THE DATA LOGGER IS REQUIRED. Reflagged water levels must be documented in the comments in EQA.
- j. Take second water level reading and then after until two water levels are within +/- 0.02

4. Staff Gauge:

- a. After cleaning staff gauge, take a reading then document on EQA form. Take another reading. Two consecutive readings should be within .02 hundredths. Note if windy and you have wave action note it on EQA form. (Example reading wave action 3.46 +/- .04)

5. Clear Hose and Ruler or staff gage:

- a. If the flowing well water level is eight feet or below you are required to use a clear hose and ruler or staff gage reading. (It can be more than eight feet and still use hose & ruler) This well must be vented.
- b. Attach the clear hose to the fitting and turn on the water.
- c. Use a ruler in hundredths to read water level in clear hose holding the ruler on top of the MP or on the staff gage section to get a staff gage reading. (Note the staff gage must have an official Datum set by the Survey Bureau)
- d. You may have to wait until water stabilizes to get a good reading, document reading on form, and then take another reading. Both readings should be within .02 hundredths.
- e. If the two readings are more than .02 hundredths, then a third reading is required and repeated until two consecutive readings are within .02 hundredths.
- f. Note: All water level readings above MP are to have a minus sign in front of the reading. (Example -3.50)

4. Reporting Datum and Measuring Point Changes Procedure

Overview:

The Division of Water Resource Information collects and reports water level data as elevations referenced to NAVD of 1988. The Measuring Points (MPs) and datums are the primary reference point from where all data are calculated. Any change to the MP or datum that is not reported to supervisors and QA staff in a timely manner will result in errors in the calculation of water levels. This SOP outlines the procedure to report well MP and staff gauge datum changes.

For any new well or staff gauge, the specialist will use an assumed MP and datum of 500.00 and request a survey. E-mail is sent to the Supervisors if the situation changes.

Procedures:

1. Ground-water Gages

- a. The Surveying Division will conduct the initial survey of a well to determine the official elevation of an MP. Location of MP will be on Top of Casing (TOC).
- b. WRI personnel will re-establish the MP for a repaired well or upgrade to site. The Survey Division has established a benchmark (BM) or reference monument (RM) at each well. The MP for the well can normally be determined by measuring the distance from the BM or MP to the TOC using a ruler and carpenter's level. If a ruler and carpenter's level cannot be used, levels can be run and used as the new official MP.

1. Processing

- a. All MP and datum updates completed by WRI personnel will be reported by completing and submitting the MPDatum Change form and submitting through the DC and QA supervisors, no later than the start of the day after the survey was made. SDMS will be updated and QA Specialist will update Hydstra. The QA Specialist will update the Level Summary.
- b. Updates to a datum or MP received from the Surveying Division by Data Management Specialist will be recorded in SDMS and scanned in ECM. Data Management Specialist will notify DC and QA personnel of the updates.

Appendix B: Processing and archiving water level data from a continuous recorder

1. Processing and archiving water level data from a continuous recorder

Overview:

QA staff process provisional data from electronic data loggers to a verified state for archiving in the HYDSTRA database. The WRI network uses data loggers, both stand-alone and telemetry, to collect water levels throughout the District. DC staff visit each data logger at least once every three months for maintenance and take two manual measurements during the visit. Comparison of the manual measurements to the values recorded by the data logger determines if data adjustments are required. The most common adjustments are made for instrument drift or offsets due to jumps in the data. If an instrument is found to be out of calibration by + or - 0.03, then one needs first to look for an obvious jump in the data that is almost equal to the difference. Often, small differences cannot be detected by a single jump, in which case the data will need to be drifted. Typically, large differences are obvious, requiring an offset to fix the problem. If data appears to be questionable, then QA staff will have to use sound reasoning to determine what may have happened.

Procedure:

1. If no adjustment required:
 - a. Login to HYDSTRA.
 - b. Go to the Workbench and enter Hydron# for station you are working on.
 - c. Open the .A file. Click the Blocks Tab and select the last block. Click the Text Tab and find the last recorded value. Write down the time, date and value for later reference. Close the .A file.
 - d. Make a copy of the current data file (X, V etc.). This is your working copy.
 - e. Open the work file you created and find the date and time that you recorded from the .A file. If it is not the first reading, you will need to highlight the date and time and split the block by clicking the Split block button.
 - f. Click the Blocks Tab and delete to the split block. Join the other blocks by selecting all blocks and clicking the Join button.
 - g. On the Text Tab, find the last value prior to your QA visit. Highlight that reading and split the block.
 - h. On the Blocks Tab, delete the block after your QA visit (future data).
 - i. While on the Blocks Tab, check that the data set you have now is what you need to process your data
 - j. Look at the Summary tab to see if there is any missing record, 151 code. If there is missing record, you must verify it is missing by looking in Table Monitor. If the record is missing in Table Monitor process the data. If the record is present in Table Monitor, you must load it to Hydstra before processing the data.
 - k. Compare the "As Found" recorded value on your QA form with the manual measurement on the QA form.
 - l. If the difference is within + or - 0.02 no adjustment is required.
 - m. Click the Graph Tab and view the graph for any irregular data points.
 - n. Click the Summary Tab to see if there are any quality codes other than 140.
 - o. (If numbers 11, 12 and 13 apply, see section II below).

- p. On the Text Tab, highlight the last value; drag the slide bar to the top, click the Edit Data Point button to open the Edit Data Point Window.
- q. Click Add Standard Comment - No Adjustment Required, enter date and time back to beginning of file. Enter your name and date of process. Click Ok to close the text box.
- r. After processing all data, click Selection - Select All, Click Selection – Refine Selection. This opens a text box that allows you change only the 140 codes. Delete all Created by Comments. Save your work.

2. If an adjustment is required – Data Drift:

- a. Prepare the data following steps 1-10 in Section I.
- b. Compare the “As found” recorded value on your QA form with the manual measurement on the QA form. If the difference is not within + or – 0.02, an adjustment is required.
- c. Calculate the difference between your manual measurement and the recorded “As Found” value on your QA log; this difference is the adjustment that will be used to drift the data.
- d. Click the Summary Tab to see if there are any quality codes other than 140.
- e. Click on Selection - Select all, and then click Filter – Adjust. Set the bottom value based on your calculations in step 11. Click OK to close the text box and drift the data.
- f. Click the Graph Tab to view the data before and after the drift. You can graph the data with comparable stations in the area.
- g. Click the Text Tab and highlight the last value.
- h. Drag the slide bar to the top and click the Edit Data Point button.
- i. Click Add Standard Comment – Data Drift – OK. Enter the time and date back to the beginning of the file. Enter your name, date of processing and click OK to close the text box.
- j. Click Selection - Select All, Click Selection - Refine Selection. This opens a text box that allows you change only the 140 codes.
- k. Click the quality Edit button and change the Quality Codes to 2. Leave all other codes as is. Delete all Created by comments and save your work.

3. Special considerations after water quality visits:

- a. Prepare the data following steps 1-10 in Section I.
- b. Compare the “As found” recorded value and the manual measurement on the Contractor’s Water Quality form. If the difference is not within + or – 0.02, an adjustment is required.
- c. Note: If the WQ sample starts in one hour and stops in another hour, you will need to delete all recorded WLs between the start and stop times for the WQ sample from the workbench. You will need to enter the as found manual water level from the QA form before the WQ sample. This value will be coded 1 and the comment “Manual WL from QA form before WQ sample” will be added. You will also need to enter the as left manual water level from the QA form after the WQ sample. This value will be coded 1 and the comment “Manual WL from QA form after WQ sample” will be added. One second before the as left WL, another WL will need to be added and will be coded 150 with the comment “Station disabled for WQ”.

- d. After processing all data, click Selection - Select All, Click Selection – Refine Selection. This opens a text box that allows you to change only the 140 codes.
- e. Click the quality Edit button and change the Quality Codes to 1 or 2 if data was drifted. Leave all other codes as is. Save your work.
- f. Highlight the last value; drag the slide bar to the last WQ point and click the
- g. Edit Point button.
- h. Click the Add Standard Comment button and Select the No adjustment or Data drift comment. Enter time and date back to the last QA point and the + or - amount if you drifted the data. Enter your name and date of process. Delete all Created by comments. Save your work.
- i. All manual WLs from the QA form will be added to the W file with comments added that the WL is before and after WQ sample.

4. Processing data that has lost its offset:

- a. Look at the previous QA form to find the offset value that was lost. Write this value on the QA form that you used to restore the lost offset. Add the lost offset value to your As Found WL and write this on the QA form. Compare this corrected As Found value to your manual WL to determine if a drift is required.
- b. Open your work file in Hydstra.
- c. Select only the data that has the missing offset.
- d. Select Filter, and then Adjust. Enter the value of the lost offset. Code this data with a Quality Code of 2. Select standard comment Data Offset and comment accordingly.
- e. Drift the entire data set if required and code and comment.