Skip to main content
U.S. flag

An official website of the United States government

Images

Explore our planet through photography and imagery, including climate change and water all the way back to the 1800s when the USGS was surveying the country by horse and buggy.

Filter Total Items: 21545
A stack of metal pans sit in a metal frame with a ventilation unit behind it, and a hand flips a switch on the machine.
Ro-Tap for dry-sieving coarse sediment
Ro-Tap for dry-sieving coarse sediment
Ro-Tap for dry-sieving coarse sediment

At the USGS Pacific Coastal and Marine Science Center, we have 3 WS Tyler RX-29 Ro-Taps that can dry-sieve coarser samples. This machine automatically rotates and taps the stack of sieves, so that smaller sediment falls through to the next sieve. Weighing the sediment trapped in each sieve gives us sediment size fractions.

At the USGS Pacific Coastal and Marine Science Center, we have 3 WS Tyler RX-29 Ro-Taps that can dry-sieve coarser samples. This machine automatically rotates and taps the stack of sieves, so that smaller sediment falls through to the next sieve. Weighing the sediment trapped in each sieve gives us sediment size fractions.

A woman wearing a lab coat and rubber gloves holds a rotating handle on the wall of a rack that runs on a track.
Rolling core storage racks
Rolling core storage racks
Rolling core storage racks

These track-mounted racks pack together to save space. Cranking a handle moves the aisle between racks for core access.

These track-mounted racks pack together to save space. Cranking a handle moves the aisle between racks for core access.

A woman in a lab coat holds a small stack of metal sediment sieves, with an enlarged photo of the sieves to show detail.
Sediment sieves
Sediment sieves
Sediment sieves

We can use the tried-and-true method of washing samples through finer and finer sieves, then weighing the sediment trapped in each sieve, to determine sediment size fractions.

We can use the tried-and-true method of washing samples through finer and finer sieves, then weighing the sediment trapped in each sieve, to determine sediment size fractions.

A woman in a lab coat holds a tall plastic cylinder with murky water in it, and a plunger to carefully stir the water.
Sediment suspension preparation
Sediment suspension preparation
Sediment suspension preparation

After adding a little sodium hexametaphosphate dispersant, we use a plunger to carefully stir the cylinder then let it settle, to ensure good mixing and standardized suspension of the sediment.

After adding a little sodium hexametaphosphate dispersant, we use a plunger to carefully stir the cylinder then let it settle, to ensure good mixing and standardized suspension of the sediment.

A woman in a lab coat climbs steps next to a large clear tube suspended upright in a metal frame
Settling tube lab
Settling tube lab
Settling tube lab

For some projects, scientists want to calculate sediment settling velocity and need to measure particle size using gravity. We use custom-built settling tubes filled with water – three at 2 meters tall (like the one shown here) and one 3 meters tall.

For some projects, scientists want to calculate sediment settling velocity and need to measure particle size using gravity. We use custom-built settling tubes filled with water – three at 2 meters tall (like the one shown here) and one 3 meters tall.

A hand holds a knob that turns a glass plate inside a vessel of water with a window.
Settling tube pan and microbalance
Settling tube pan and microbalance
Settling tube pan and microbalance

After releasing sediment into the top of a settling tube filled with water, a pan and microbalance collects and weighs the sediment as it slowly reaches the bottom of the tube. A computer records the cumulative sediment weight over time, as well as how long it took each particle to reach the pan.

After releasing sediment into the top of a settling tube filled with water, a pan and microbalance collects and weighs the sediment as it slowly reaches the bottom of the tube. A computer records the cumulative sediment weight over time, as well as how long it took each particle to reach the pan.

A woman in a lab coat prepares to pour a small amount of sediment onto louvered opening above a tube filled with water.
Settling tube sediment delivery mechanism
Settling tube sediment delivery mechanism
Settling tube sediment delivery mechanism

The settling tube is filled with water and a pre-weighed sediment sample of mixed particle sizes is poured onto this brass "gate" at the top of the tube. When the operator flips the switch, the gate opens quickly like a venetian blind, releasing the whole sediment sample into the water column at the same time.

The settling tube is filled with water and a pre-weighed sediment sample of mixed particle sizes is poured onto this brass "gate" at the top of the tube. When the operator flips the switch, the gate opens quickly like a venetian blind, releasing the whole sediment sample into the water column at the same time.

A person wearing a lab coat and rubber gloves holds clear plastic tube with water running into a cylindrical metal pan.
Sieving sediment
Sieving sediment
Sieving sediment

Washing a sediment sample through two sieves with distilled water lets us measure the fractions of gravel (bigger than 2 millimeters or -1 phi) and sand (2 millimeters to 63 microns, -1 phi to 4 phi). Smaller sediment passes through the sieves into a standard 1-liter graduated cylinder.

Washing a sediment sample through two sieves with distilled water lets us measure the fractions of gravel (bigger than 2 millimeters or -1 phi) and sand (2 millimeters to 63 microns, -1 phi to 4 phi). Smaller sediment passes through the sieves into a standard 1-liter graduated cylinder.

A woman wearing a lab coat and rubber gloves places a long plastic tube on a narrow storage shelving unit.
Storing sediment core D-tubes
Storing sediment core D-tubes
Storing sediment core D-tubes

We slip split cores into a labeled D-tube, and both are stored on specialized core racks in a walk-in sample refrigerator. USGS and non-USGS scientists often use our core and sample archives for new research. Contact the lab manager for access policies and other details.

We slip split cores into a labeled D-tube, and both are stored on specialized core racks in a walk-in sample refrigerator. USGS and non-USGS scientists often use our core and sample archives for new research. Contact the lab manager for access policies and other details.

A person wearing rubber gloves and lab coat holds a spatula and plastic sample bag, ready to take a sample from a sediment core.
Subsampling a sediment core
Subsampling a sediment core
Subsampling a sediment core

Sediment cores may be subsampled for further processing and analysis in other labs, like the Sediment Lab which is across the hall from the Core Lab.

Sediment cores may be subsampled for further processing and analysis in other labs, like the Sediment Lab which is across the hall from the Core Lab.

A woman in a lab coat holds a tall plastic cylinder with murky water in it, and a sampling device to take a small amount out.
Subsampling the suspended sediment sample
Subsampling the suspended sediment sample
Subsampling the suspended sediment sample

Lab technician Angela Tan takes a sample of the sediment suspended in liquid, for analysis in one of several ways.

Lab technician Angela Tan takes a sample of the sediment suspended in liquid, for analysis in one of several ways.

A woman in a lab coat stands in front of an apparatus with a thin cylindrical glass tube attached to flexible plastic tubing.
Total inorganic carbon content analyzer
Total inorganic carbon content analyzer
Total inorganic carbon content analyzer

The UIC CM5230/CM5015 analyzes total inorganic carbon content. It's less automated than other analyzers, but often easier to use.

The UIC CM5230/CM5015 analyzes total inorganic carbon content. It's less automated than other analyzers, but often easier to use.

A woman wearing a lab coast and rubber gloves stretches a piece of plastic wrap over an exposed sediment core on a lab table.
Wrapping a sediment core half
Wrapping a sediment core half
Wrapping a sediment core half

Each half of a split sediment core is wrapped in plastic to prevent drying and contamination. For long-term storage, we can shrink-wrap one half with a thick film that prevents moisture loss.

Each half of a split sediment core is wrapped in plastic to prevent drying and contamination. For long-term storage, we can shrink-wrap one half with a thick film that prevents moisture loss.

A woman in a lab coat stands in front of a machine operating a turnstile with a beaker in it.
X-ray particle-size analysis of sediment settling rates
X-ray particle-size analysis of sediment settling rates
X-ray particle-size analysis of sediment settling rates

The Micromeritics Sedigraph III uses X-rays to automatically analyze settling times for sediment sizes between 300 microns and 0.1 microns (2 phi to 13 phi).

The Micromeritics Sedigraph III uses X-rays to automatically analyze settling times for sediment sizes between 300 microns and 0.1 microns (2 phi to 13 phi).

Photo of scientist climbing an island off the coast of Big Sur
WERC Big Sur Deployment
WERC Big Sur Deployment
WERC Big Sur Deployment

Scientists from the USGS Western Ecological Research Center deploy to Big Sur to study seabird populations.

Scientists from the USGS Western Ecological Research Center deploy to Big Sur to study seabird populations.

Andrew Stevens runs a personal watercraft rigged with sonar and precision GPS to survey northern Monterey Bay
Andrew Stevens runs a personal watercraft rigged with sonar and precis
Andrew Stevens runs a personal watercraft rigged with sonar and precis
Andrew Stevens runs a personal watercraft rigged with sonar and precis

Andrew Stevens runs a personal watercraft rigged with sonar and precision GPS to survey northern Monterey Bay, California.

Andrew Stevens runs a personal watercraft rigged with sonar and precision GPS to survey northern Monterey Bay, California.

Litterfall and throughfall monitoring for mercury dry deposition
Litterfall and throughfall monitoring for mercury dry deposition
Litterfall and throughfall monitoring for mercury dry deposition
Litterfall and throughfall monitoring for mercury dry deposition

Litterfall and throughfall monitoring for mercury dry deposition

USGS researchers stay in radio contact with a personal watercraft operator offshore
USGS researchers stay in radio contact with a PWC operator
USGS researchers stay in radio contact with a PWC operator
USGS researchers stay in radio contact with a PWC operator

Alex Snyder (left) and SeanPaul La Selle stay in radio contact with a personal watercraft operator offshore in order to provide supplies and safety near Moss Landing, California. 

Alex Snyder (left) and SeanPaul La Selle stay in radio contact with a personal watercraft operator offshore in order to provide supplies and safety near Moss Landing, California. 

Ruler placed next to a paper with mouse footprint
Width measurement for Pacific pocket mouse forefoot print on track card
Width measurement for Pacific pocket mouse forefoot print on track card
Width measurement for Pacific pocket mouse forefoot print on track card

Width measurement for Pacific pocket mouse forefoot print on track card

bridge over Mohawk River at Lock 8 dam
Mohawk River at Lock 8 near Schenectady (01354330)
Mohawk River at Lock 8 near Schenectady (01354330)
Mohawk River at Lock 8 near Schenectady (01354330)

Mohawk River at Lock 8 near Schenectady (01354330) Live Ice Jam Web Camera

Super Gage-School Branch at CR750N at Brownsburg, IN
Super Gage-School Branch at CR750N at Brownsburg, IN
Super Gage-School Branch at CR750N at Brownsburg, IN
Super Gage-School Branch at CR750N at Brownsburg, IN

Super Gage-School Branch at CR750N at Brownsburg, IN 

Was this page helpful?