Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2570

Rapid characterization of the February 2023 Kahramanmaraş, Turkey, earthquake sequence

The 6 February 2023 Mw 7.8 Pazarcık and subsequent Mw  7.5 Elbistan earthquakes generated strong ground shaking that resulted in catastrophic human and economic loss across south‐central Türkiye and northwest Syria. The rapid characterization of the earthquakes, including their location, size, fault geometries, and slip kinematics, is critical to estimate the impact of significant seismic events.
Authors
Dara Elyse Goldberg, Tuncay Taymaz, Nadine G. Reitman, Alexandra Elise Hatem, Seda Yolsal-Çevikbilen, William D. Barnhart, Tahir Serkan Irmak, David J. Wald, Taylan Öcalan, William L. Yeck, Berkan Özkan, Jessica Ann Thompson Jobe, David R. Shelly, Eric M. Thompson, Christopher DuRoss, Paul S. Earle, Richard W. Briggs, Harley M. Benz, Ceyhun Erman, Ali Hasan Doğan, Cemali Altuntaş

Laboratory simulation of earthquake-induced damage in lava dome rocks

Earthquakes can impart varying degrees of damage and permanent, inelastic strain on materials, potentially resulting in ruptures that may promote hazards such as landslides and other collapse events. However, the accumulation of damage in rocks under the frequency and amplitude of shaking experienced during earthquake events is rarely systematically measured due to technical limitations. Here, we
Authors
Lauren N. Schaefer, Jackie E. Kendrick, Yan Lavallée, Jenny Schauroth, Oliver D. Lamb, Anthony Lamur, Takahiro Miwa, Ben M. Kennedy

Comparison of nonergodic ground-motion components from CyberShake and NGA-West2 datasets in California

In this study, we compare the Southern California Earthquake Center CyberShake platform against the Next Generation Attenuation‐West2 empirical datasets. Because the CyberShake and empirical datasets cover very different magnitude ranges and site conditions, we develop ground‐motion models (GMMs) for CyberShake datasets to compare trends with empirical GMMs and decompose the residuals for further
Authors
Xiaofeng Meng, Christine Goulet, Kevin R. Milner, Robert Graves, Scott Callaghan

Rift basins and intraplate earthquakes: New high-resolution aeromagnetic data provide insights into buried structures of the Charleston, South Carolina seismic zone

The delineation of faults that pose seismic risk in intraplate seismic zones and the mapping of features associated with failed rift basins can help our understanding of links between the two. We use new high-resolution aeromagnetic data, previous borehole sample information, and reprocessed seismic reflection profiles to image subsurface structures and evaluate recent fault activity within the Ch
Authors
Anjana K. Shah, Thomas L. Pratt, J. Wright Horton,

Quantification of geodetic strain rate uncertainties and implications for seismic hazard estimates

Geodetic velocity data provide first-order constraints on crustal surface strain rates, which in turn are linked to seismic hazard. Estimating the 2-D surface strain tensor everywhere requires knowledge of the surface velocity field everywhere, while geodetic data such as Global Navigation Satellite System (GNSS) only have spatially scattered measurements on the surface of the Earth. To use these
Authors
Jeremy Maurer, Kathryn Zerbe Materna

Incorporating uncertainty in susceptibility criteria into probabilistic liquefaction hazard analysis

Most conventional approaches for assessing liquefaction triggering hazards generally rely on simplified procedures that involve identifying liquefaction susceptible layers and calculating a factor of safety against liquefaction (FSL) in each layer. Such procedures utilize deterministic semi-empirical models for standard penetration test (SPT), cone penetrometer test (CPT), or shear wave velocity (
Authors
Andrew James Makdisi

Chemical characterization of San Andreas Fault Observatory at Depth (SAFOD) Phase 3 core

We present new X-ray fluorescence compositions of 27 core samples from Phase 3, Hole G of the San Andreas Fault Observatory at Depth, nearly doubling the published dataset for the core. The new analyses consist of major and trace element compositions and the first published data for rare earth elements from Hole G. Whole-rock compositions were obtained to further the analysis of active geochemical
Authors
Diane E. Moore, Kelly K. Bradbury

Surface fault displacement models for strike-slip faults

Fault displacement models (FDMs) are an essential component of the probabilistic fault displacement hazard analyses (PFDHA), much like ground motion models in the probabilistic seismic hazard analyses for ground motion hazards. In this study, we develop several principal surface FDMs for strike-slip earthquakes. The model development is based on analyses of the new and comprehensive fault displac
Authors
Brian S. J. Chiou, Rui Chen, Kate Thomas, Christopher W. D. Milliner, Timothy E. Dawson, Mark D. Petersen

Strength recovery in quartzite is controlled by changes in friction in experiments at hydrothermal conditions up to 200°C

The rate of fault zone restrengthening between earthquakes can be influenced by both frictional and cohesive healing processes. Friction is dependent on effective normal stress while cohesion is independent of normal stress, potentially explaining—in part—the lack of depth dependence of earthquake stress drops. Although amenable to laboratory testing, few studies have systematically addressed the
Authors
Tamara Nicole Jeppson, David A. Lockner, Nicholas M. Beeler, Stephen H. Hickman

Nonlinear radiation damping: A new method for dissipating energy in dynamic earthquake rupture simulations

Dynamic earthquake rupture simulations are used to understand earthquake mechanics and the ground shaking that earthquakes produce. These simulations can help diagnose past earthquake behavior and are also used to generate scenarios of possible future earthquakes. Traditional dynamic rupture models generally assume elastic rock response, but this can lead to peak on‐fault slip rates and ground sha
Authors
Michael Barall, Ruth A. Harris

Investigating spatio-temporal variability of initial 230Th/232Th in intertidal corals

One of the key factors in obtaining precise and accurate 230Th ages of corals, especially for corals with ages less than a few thousand years, is the correction for non-radiogenic 230Th based on an initial 230Th/232Th value (230Th/232Th0). Studies that consider coral 230Th/232Th0 values in intertidal environments are limited, and it is in these environments that corals have Th concentrations 100–1
Authors
Hong-Wei Chiang, Belle E. Philibosian, Aron J. Meltzner, Chung-Che Wu, Chuan-Chou Shen, R. Lawrence Edwards, Chih-Kai Chuang, Bambang W. Suwargadi, Danny H. Natawidjaja

Magnitude conversion and earthquake recurrence rate models for the central and eastern United States

Development of Seismic Source Characterization (SSC) models, which is an essential part of Probabilistic Seismic Hazard Analyses (PSHA), can help forecast the temporal and spatial distribution of future damaging earthquakes (𝑀w≥ 5) in seismically active regions. Because it is impossible to associate all earthquakes with known faults, seismic source models for PSHA often include sources of diffuse
Authors
Rasool Anooshehpoor, Thomas Weaver, Jon Ake, Cliff Munson, Morgan P. Moschetti, David R. Shelly, Peter M. Powers