Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 865

Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts

Large earthquakes initiate chains of surface processes that last much longer than the brief moments of strong shaking. Most moderate- and large-magnitude earthquakes trigger landslides, ranging from small failures in the soil cover to massive, devastating rock avalanches. Some landslides dam rivers and impound lakes, which can collapse days to centuries later, and flood mountain valleys for hundre
Authors
Xuanmei Fan, Gianvito Scaringi, Oliver Korup, A. Joshua West, Cees J. van Westen, Hakan Tanyas, Niels Hovius, Tristram C Hales, Randall W. Jibson, Kate E. Allstadt, Limin Zhang, Stephen G. Evans, Chong Xu, Gen Li, Xiangjun Pei, Qiang Xu, Runqiu Huang

Wildfire as a catalyst for hydrologic and geomorphic change

Wildfire has been a constant presence on the Earth since at least the Silurian period, and is a landscape-scale catalyst that results in a step-change perturbation for hydrologic systems, which ripples across burned terrain, shaping the geomorphic legacy of watersheds. Specifically, wildfire alters two key landscape properties: (1) overland flow, and (2) soil erodibility. Overland flow and soil er
Authors
Francis K. Rengers

Factors controlling landslide frequency-area distributions

A power‐law relation for the frequency–area distribution (FAD) of medium and large landslides (e.g. tens to millions of square meters) has been observed by numerous authors. But the FAD of small landslides diverges from the power‐law distribution, with a rollover point below which frequencies decrease for smaller landslides. Some studies conclude that this divergence is an artifact of unmapped sma
Authors
Hakan Tanyaş, Cees J. van Westen, Kate E. Allstadt, Randall W. Jibson

Characterizing the catastrophic 2017 Mud Creek Landslide, California, using repeat Structure-from-Motion (SfM) photogrammetry

Along the rugged coast of Big Sur, California, the Mud Creek landslide failed catastrophically on May 20, 2017 and destroyed over 400 m of scenic California State Highway 1. We collected structure-from-motion (SfM) photogrammetry data using airborne platforms that, when combined with existing airborne lidar data, revealed that the area exhibited significant topographic change and displacement befo

Authors
Jonathan Warrick, Andrew C. Ritchie, Mark E. Reid, Kevin M. Schmidt, Joshua B. Logan

Landslides triggered by Hurricane Maria: Assessment of an extreme event in Puerto Rico

Hurricane Maria hit the island of Puerto Rico on 20 September 2017 and triggered more than 40,000 landslides in at least three-fourths of Puerto Rico’s 78 municipalities. The number of landslides that occurred during this event was two orders of magnitude greater than those reported from previous hurricanes. Landslide source areas were commonly limited to surficial soils but also extended into und

Authors
Erin Bessette-Kirton, Corina Cerovski-Darriau, William Schulz, Jeffrey A. Coe, Jason W. Kean, Jonathan W. Godt, Matthew A. Thomas, K. Stephen Hughes

Long-term soil-water tension measurements in semi-arid environments: A method for automated tensiometer refilling

Tensiometer-equipped data acquisition systems measure and record positive and negative soil-water pressures. These data contribute to studies in hillslope hydrology, including analyses of rainfall runoff, near-surface hydrologic response, and slope stability. However, the unique ability of a tensiometer to rapidly and accurately measure pre- and post-saturation subsurface pressures requires mainte
Authors
Joel B. Smith, Jason W. Kean

Quantifying post-wildfire hillslope erosion with lidar

Following a wildfire, flooding and debris- flow hazards are common and pose a threat to human life and infrastructure in steep burned terrain. Wildfire enhances both water runoff and soil erosion, which ultimately shape the debris flow potential. The erosional processes that route excess sediment from hillslopes to debris-flow channels in recently burned areas, however, are poorly constrained. I
Authors
Francis K. Rengers, Luke McGuire

Climate dictates magnitude of asymmetry in soil depth and hillslope gradient

Hillslope asymmetry is often attributed to differential eco‐hydro‐geomorphic processes resulting from aspect‐related differences in insolation. At midlatitudes, polar facing hillslopes are steeper, wetter, have denser vegetation, and deeper soils than their equatorial facing counterparts. We propose that at regional scales, the magnitude in insolation‐driven hillslope asymmetry is sensitive to var
Authors
Assaf Inbar, Petter Nyman, Francis K. Rengers, Patrick N. J. Lane, Gary J. Sheridan

Developing hydro-meteorological thresholds for shallow landslide initiation and early warning

Consistent relations between shallow landslide initiation and associated rainfall characteristics remain difficult to identify, due largely to the complex hydrological and geological processes causing slopes to be predisposed to failure and those processes that subsequently trigger failures. Considering the importance of hillslope hydrology for rainfall-induced landsliding, we develop and test a m
Authors
Benjamin B. Mirus, Michael D. Morphew, Joel B. Smith

Identifying physics‐based thresholds for rainfall‐induced landsliding

Most regional landslide warning systems utilize empirically derived rainfall thresholds that are difficult to improve without recalibration to additional landslide events. To address this limitation, we explored the use of synthetic rainfall to generate thousands of possible storm patterns and coupled them with a physics‐based hydrology and slope stability model for various antecedent soil saturat
Authors
Matthew A. Thomas, Benjamin B. Mirus, Brian D. Collins

Seismic and acoustic signatures of surficial mass movements at volcanoes

Surficial mass movements, such as debris avalanches, rock falls, lahars, pyroclastic flows, and outburst floods, are a dominant hazard at many volcanoes worldwide. Understanding these processes, cataloging their spatio-temporal occurrence, and detecting, tracking, and characterizing these events would advance the science of volcano monitoring and help mitigate hazards. Seismic and acoustic methods
Authors
Kate E. Allstadt, Robin S Matoza, Andrew Lockhart, Seth C. Moran, Jacqueline Caplan-Auerbach, Matthew M. Haney, Weston Thelen, Stephen D. Malone

A global empirical model for near real-time assessment of seismically induced landslides

Earthquake-triggered landslides are a significant hazard in seismically active regions, but our ability to assess the hazard they pose in near real-time is limited. In this study, we present a new globally applicable model for seismically induced landslides based on the most comprehensive global dataset available; we use 23 landslide inventories that span a range of earthquake magnitudes and clim
Authors
M. Anna Nowicki Jessee, M.W. Hamburger, Kate E. Allstadt, David J. Wald, H. Tanyas, Mike Hearne, E.M. Thompson