Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2161

Introduction to the digitization of seismic data: A user’s guide

Modern seismic data are collected, distributed, and analyzed using digital formats, and this has become a standard for the field. Although most modern seismometers still make use of analog electronic circuits, their data are converted from an analog voltage output to time‐tagged counts by way of digitization. Although much of the digitization process is not complicated to conceptualize, there is a
Authors
Adam T. Ringler, Robert E. Anthony, Patrick Bastien, Adam Pascale, Bion J. Merchant

The rainfall intensity-duration control of debris flows after wildfire

Increased wildfire activity in the western United States has exposed regional gaps in our understanding of postfire debris-flow generation. To address this problem, we characterized flows in an unstudied area to test the rainfall intensity-duration control of the hazard. Our rainfall measurements and field observations from the northern Sierra Nevada (California, USA) show that debris flows result
Authors
Matthew A. Thomas, Donald N. Lindsay, David B. Cavagnaro, Jason W. Kean, Scott W. McCoy, Andrew Paul Graber

Rapid characterization of the February 2023 Kahramanmaraş, Turkey, earthquake sequence

The 6 February 2023 Mw 7.8 Pazarcık and subsequent Mw  7.5 Elbistan earthquakes generated strong ground shaking that resulted in catastrophic human and economic loss across south‐central Türkiye and northwest Syria. The rapid characterization of the earthquakes, including their location, size, fault geometries, and slip kinematics, is critical to estimate the impact of significant seismic events.
Authors
Dara Elyse Goldberg, Tuncay Taymaz, Nadine G. Reitman, Alexandra Elise Hatem, Seda Yolsal-Çevikbilen, William D. Barnhart, Tahir Serkan Irmak, David J. Wald, Taylan Öcalan, William L. Yeck, Berkan Özkan, Jessica Ann Thompson Jobe, David R. Shelly, Eric M. Thompson, Christopher DuRoss, Paul S. Earle, Richard W. Briggs, Harley M. Benz, Ceyhun Erman, Ali Hasan Doğan, Cemali Altuntaş

Laboratory simulation of earthquake-induced damage in lava dome rocks

Earthquakes can impart varying degrees of damage and permanent, inelastic strain on materials, potentially resulting in ruptures that may promote hazards such as landslides and other collapse events. However, the accumulation of damage in rocks under the frequency and amplitude of shaking experienced during earthquake events is rarely systematically measured due to technical limitations. Here, we
Authors
Lauren N. Schaefer, Jackie E. Kendrick, Yan Lavallée, Jenny Schauroth, Oliver D. Lamb, Anthony Lamur, Takahiro Miwa, Ben M. Kennedy

Mapping landslide susceptibility over large regions with limited data

Landslide susceptibility maps indicate the spatial distribution of landslide likelihood. Modeling susceptibility over large or diverse terrains remains a challenge due to the sparsity of landslide data (mapped extent of known landslides) and the variability in triggering conditions. Several different data sampling strategies of landslide locations used to train a susceptibility model are used to m
Authors
Jacob Bryson Woodard, Benjamin B. Mirus, Matthew Crawford, Dani Or, Ben Leshchinsky, Kate E. Allstadt, Nathan J. Wood

Rift basins and intraplate earthquakes: New high-resolution aeromagnetic data provide insights into buried structures of the Charleston, South Carolina seismic zone

The delineation of faults that pose seismic risk in intraplate seismic zones and the mapping of features associated with failed rift basins can help our understanding of links between the two. We use new high-resolution aeromagnetic data, previous borehole sample information, and reprocessed seismic reflection profiles to image subsurface structures and evaluate recent fault activity within the Ch
Authors
Anjana K. Shah, Thomas L. Pratt, J. Wright Horton,

Guidance for parameterizing post-fire hydrologic models with in situ infiltration measurements

Wildfire can alter soil-hydraulic properties, often resulting in an increased prevalence of infiltration-excess overland flow and greater potential for debris-flow hazards. Mini disk tension infiltrometers (MDIs) can be used to estimate soil hydraulic properties, such as field-saturated hydraulic conductivity (Kfs) and wetting front potential (Hf), and their spatial variability following wildfire.
Authors
T. Liu, Luke A. McGuire, Ann Youberg, Alexander N. Gorr, Francis K. Rengers

Incorporating uncertainty in susceptibility criteria into probabilistic liquefaction hazard analysis

Most conventional approaches for assessing liquefaction triggering hazards generally rely on simplified procedures that involve identifying liquefaction susceptible layers and calculating a factor of safety against liquefaction (FSL) in each layer. Such procedures utilize deterministic semi-empirical models for standard penetration test (SPT), cone penetrometer test (CPT), or shear wave velocity (
Authors
Andrew James Makdisi

Surface fault displacement models for strike-slip faults

Fault displacement models (FDMs) are an essential component of the probabilistic fault displacement hazard analyses (PFDHA), much like ground motion models in the probabilistic seismic hazard analyses for ground motion hazards. In this study, we develop several principal surface FDMs for strike-slip earthquakes. The model development is based on analyses of the new and comprehensive fault displac
Authors
Brian S. J. Chiou, Rui Chen, Kate Thomas, Christopher W. D. Milliner, Timothy E. Dawson, Mark D. Petersen

User needs assessment for postfire debris-flow inundation hazard products

Debris flows are a type of mass movement that is more likely after wildfires, and while existing hazard assessments evaluate the rainfall intensities that are likely to trigger debris flows, no operational hazard assessment exists for identifying the areas where they will run out after initiation. Fifteen participants who work in a wide range of job functions associated with southern California po
Authors
Katherine R. Barnhart, Veronica Romero, Katherine R. Clifford

Magnitude conversion and earthquake recurrence rate models for the central and eastern United States

Development of Seismic Source Characterization (SSC) models, which is an essential part of Probabilistic Seismic Hazard Analyses (PSHA), can help forecast the temporal and spatial distribution of future damaging earthquakes (𝑀w≥ 5) in seismically active regions. Because it is impossible to associate all earthquakes with known faults, seismic source models for PSHA often include sources of diffuse
Authors
Rasool Anooshehpoor, Thomas Weaver, Jon Ake, Cliff Munson, Morgan P. Moschetti, David R. Shelly, Peter M. Powers

Dense geophysical observations reveal a triggered, concurrent multi-fault rupture at the Mendocino Triple Junction

A central question of earthquake science is how far ruptures can jump from one fault to another, because cascading ruptures can increase the shaking of a seismic event. Earthquake science relies on earthquake catalogs and therefore how complex ruptures get documented and cataloged has important implications. Recent investments in geophysical instrumentation allow us to resolve increasingly complex
Authors
William L. Yeck, David R. Shelly, Dara Elyse Goldberg, Kathryn Zerbe Materna, Paul S. Earle