Skip to main content
U.S. flag

An official website of the United States government

Climate Change

Filter Total Items: 103

Multi-century perspectives on current and future streamflow in the Missouri River Basin

The Missouri River system is the life-blood of the American Midwest providing water resources that drive agriculture, industry, hydroelectric power generation, and ecosystems. However, the Missouri River Basin (MRB) (Figure 1) is the only major river in the western U.S. for which hydrologic reconstructions from tree rings have not been generated in any systematic way. This knowledge gap is...
link

Multi-century perspectives on current and future streamflow in the Missouri River Basin

The Missouri River system is the life-blood of the American Midwest providing water resources that drive agriculture, industry, hydroelectric power generation, and ecosystems. However, the Missouri River Basin (MRB) (Figure 1) is the only major river in the western U.S. for which hydrologic reconstructions from tree rings have not been generated in any systematic way. This knowledge gap is...
Learn More

Grinnell Glacier 1938 - 2016

Notice the man standing on the glacier in the center of the historic photograph. The figure lends a frame of reference to the photo pair, allowing the viewer to more easily interpret the depth of ice and the loss of volume when compared to the 2016 image.
link

Grinnell Glacier 1938 - 2016

Notice the man standing on the glacier in the center of the historic photograph. The figure lends a frame of reference to the photo pair, allowing the viewer to more easily interpret the depth of ice and the loss of volume when compared to the 2016 image.
Learn More

Grinnell Glacier 1911 - 2016

The historic image shows how the upper bench of ice flowed into the main body of Grinnell Glacier. By the early 1920s, the glacier’s volume had been reduced to the point that the two pieces became disconnected. The upper bench, considered a separate glacier, was later renamed The Salamander Glacier for its salamander-like profile against the headwall. The Continental Divide runs along the ridge...
link

Grinnell Glacier 1911 - 2016

The historic image shows how the upper bench of ice flowed into the main body of Grinnell Glacier. By the early 1920s, the glacier’s volume had been reduced to the point that the two pieces became disconnected. The upper bench, considered a separate glacier, was later renamed The Salamander Glacier for its salamander-like profile against the headwall. The Continental Divide runs along the ridge...
Learn More

Grinnell Glacier, circa 1888-2016

This historic image is one of the oldest images re-photographed among the collection. The massive wall of ice that constituted the terminus of Grinnell Glacier has receded beyond view from this point. Each summer thousands of hikers take the well-worn trail to be rewarded with the sight of the remnant Grinnell Glacier and Upper Grinnell Lake. Image Use Most of the repeat photography images...
link

Grinnell Glacier, circa 1888-2016

This historic image is one of the oldest images re-photographed among the collection. The massive wall of ice that constituted the terminus of Grinnell Glacier has receded beyond view from this point. Each summer thousands of hikers take the well-worn trail to be rewarded with the sight of the remnant Grinnell Glacier and Upper Grinnell Lake. Image Use Most of the repeat photography images...
Learn More

Science in Glacier National Park

Glacier National Park (GNP) is considered a stronghold for a large diversity of plant and animal species and harbors some of the last remaining populations of threatened and endangered species such as grizzly bear and bull trout, as well as non threatened, yet ecologically important species such as bighorn sheep and black bear. The mountain ecosystems of GNP that support these species are dynamic...
link

Science in Glacier National Park

Glacier National Park (GNP) is considered a stronghold for a large diversity of plant and animal species and harbors some of the last remaining populations of threatened and endangered species such as grizzly bear and bull trout, as well as non threatened, yet ecologically important species such as bighorn sheep and black bear. The mountain ecosystems of GNP that support these species are dynamic...
Learn More

Time Series of Glacier Retreat

The retreat of glaciers (see PDF at end of page) in Glacier National Park, Montana, has received widespread attention by the media, the public, and scientists because it is a clear and poignant indicator of change in the northern Rocky Mountains of the USA. In 2017, the USGS and Portland State University released a dataset which describes the areas of the 37 named glaciers in Glacier National Park...
link

Time Series of Glacier Retreat

The retreat of glaciers (see PDF at end of page) in Glacier National Park, Montana, has received widespread attention by the media, the public, and scientists because it is a clear and poignant indicator of change in the northern Rocky Mountains of the USA. In 2017, the USGS and Portland State University released a dataset which describes the areas of the 37 named glaciers in Glacier National Park...
Learn More

Western Waters Invasive Species and Disease Research Program

Researchers at the Northern Rocky Mountain Science Center's Western Waters Invasive Species and Disease Research Program work extensively with federal, state, tribal, regional, and local partners to deliver science to improve early detection and prevention of invasive species and disease; understand complex interactions that promote invasive species and disease, and their impacts (and associated...
link

Western Waters Invasive Species and Disease Research Program

Researchers at the Northern Rocky Mountain Science Center's Western Waters Invasive Species and Disease Research Program work extensively with federal, state, tribal, regional, and local partners to deliver science to improve early detection and prevention of invasive species and disease; understand complex interactions that promote invasive species and disease, and their impacts (and associated...
Learn More

Amphibian Research and Monitoring Initiative: Rocky Mountain Region

The Rocky Mountain Region of Amphibian Research and Monitoring Initiative (ARMI) encompasses Montana, Wyoming, Colorado, and New Mexico. Two USGS Science Centers initiate and develop ARMI projects in this region. Investigations at NOROCK are headed by Dr. Blake Hossack. Investigations at the Fort Collins Science Center (FORT), Colorado, are headed by Dr. Erin Muths. The ARMI program is based on a...
link

Amphibian Research and Monitoring Initiative: Rocky Mountain Region

The Rocky Mountain Region of Amphibian Research and Monitoring Initiative (ARMI) encompasses Montana, Wyoming, Colorado, and New Mexico. Two USGS Science Centers initiate and develop ARMI projects in this region. Investigations at NOROCK are headed by Dr. Blake Hossack. Investigations at the Fort Collins Science Center (FORT), Colorado, are headed by Dr. Erin Muths. The ARMI program is based on a...
Learn More

Climate Change in Mountain Ecosystems (CCME)

Climate change is widely acknowledged to have a profound effect on the biosphere and cryosphere with many and diverse impacts on global resources. Mountain ecosystems in the western U.S., and the U.S. Northern Rocky Mountains in particular, are highly sensitive to climate change. Warming in western Montana is nearly 2 times greater than the rise in global temperatures over the last 100+ years...
link

Climate Change in Mountain Ecosystems (CCME)

Climate change is widely acknowledged to have a profound effect on the biosphere and cryosphere with many and diverse impacts on global resources. Mountain ecosystems in the western U.S., and the U.S. Northern Rocky Mountains in particular, are highly sensitive to climate change. Warming in western Montana is nearly 2 times greater than the rise in global temperatures over the last 100+ years...
Learn More

Adaptive Capacity: the linchpin for understanding and addressing species vulnerability to climate-change impacts

When prioritizing natural resource management activities, managers need to understand how plant and animal species differ in terms of their vulnerability to variation in environmental conditions caused by climate change. Species vulnerability to climate change is controlled by (1) exposure to changing environmental conditions, (2) sensitivity to direct and indirect effects of those changing...
link

Adaptive Capacity: the linchpin for understanding and addressing species vulnerability to climate-change impacts

When prioritizing natural resource management activities, managers need to understand how plant and animal species differ in terms of their vulnerability to variation in environmental conditions caused by climate change. Species vulnerability to climate change is controlled by (1) exposure to changing environmental conditions, (2) sensitivity to direct and indirect effects of those changing...
Learn More

Predicting Effects of Climate Change on Native Fishes in Northern Great Plains Streams

The Northern Great Plains of North America are a region of profound global importance because organisms that live in these semi-arid prairie environments have developed a unique ability to live through conditions of extreme heat, cold, floods, and drought. Prairie streams are essential components of these ecosystems because they provide critical “green lines” of habitat for both aquatic and...
link

Predicting Effects of Climate Change on Native Fishes in Northern Great Plains Streams

The Northern Great Plains of North America are a region of profound global importance because organisms that live in these semi-arid prairie environments have developed a unique ability to live through conditions of extreme heat, cold, floods, and drought. Prairie streams are essential components of these ecosystems because they provide critical “green lines” of habitat for both aquatic and...
Learn More

Estimating Future Streamflow in Eastern Montana Using the Precipitation-Runoff Modeling System and the RegCM3 Regional Climate Model

Streams in the Northern Great Plains provide critical “green lines” of habitat for aquatic and terrestrial wildlife. However, changes in water quantity associated with global climate change may transform some prairie streams from essential refuges to habitats no longer capable of supporting fishes. Although studies have examined climate change effects on larger river basins across the United...
link

Estimating Future Streamflow in Eastern Montana Using the Precipitation-Runoff Modeling System and the RegCM3 Regional Climate Model

Streams in the Northern Great Plains provide critical “green lines” of habitat for aquatic and terrestrial wildlife. However, changes in water quantity associated with global climate change may transform some prairie streams from essential refuges to habitats no longer capable of supporting fishes. Although studies have examined climate change effects on larger river basins across the United...
Learn More