Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2570

Fractures, scarps, faults, and landslides mapped using LiDAR, Glacier Bay National Park and Preserve, Alaska

This map of fractures, scarps, faults, and landslides was completed to identify areas in Glacier Bay National Park and Preserve that may present a landslide-generated tsunami hazard. To address the potential of landslide and tsunami hazards in the park, the National Park Service (NPS) and the US Geological Survey (USGS) partnered to conduct a multi-year hazard assessment of Glacier Bay National Pa
Authors
Chad Hults, Jeffrey A. Coe, Nikita N. Avdievitch

Global seismic networks operated by the U.S. Geological Survey

The U.S. Geological Survey (USGS) Global Seismographic Network (GSN) Program operates two thirds of the GSN, a network of state‐of‐the‐art, digital seismological and geophysical sensors with digital telecommunications. This network serves as a multiuse scientific facility and a valuable resource for research, education, and monitoring. The other one third of the GSN is funded by the National Scien
Authors
David C. Wilson, Charles R. Hutt, Lind Gee, Adam T. Ringler, Robert E. Anthony

Sediment thickness map of United States Atlantic and Gulf Coastal Plain Strata, and their influence on earthquake ground motions

With the recent successful accounting of basin depth ground-motion adjustments in seismic hazard analyses for select areas of the western United States, we move toward implementing similar adjustments in the Atlantic and Gulf Coastal Plains by constructing a sediment thickness model and evaluating multiple relevant site amplification models for central and eastern United States seismic hazard anal
Authors
Oliver S. Boyd, David Churchwell, Morgan P. Moschetti, Eric M. Thompson, Martin C. Chapman, Okan Ilhan, Thomas L. Pratt, Sean Kamran Ahdi, Sanaz Rezaeian

Crustal block-controlled contrasts in deformation, uplift, and exhumation in the Santa Cruz Mountains, California, USA, imaged through apatite (U-Th)/He thermochronology and 3-D geological modeling

Deformation along strike-slip plate margins often accumulates within structurally partitioned and rheologically heterogeneous crustal blocks within the plate boundary. In these cases, contrasts in the physical properties and state of juxtaposed crustal blocks may play an important role in accommodation of deformation. Near the San Francisco Bay Area, California, USA, the Pacific−North American pla
Authors
Curtis William Baden, David L. Shuster, Jeremy H. Hourigan, Jared T. Gooley, Melanie Cahill, George E. Hilley

Time-dependent weakening of granite at hydrothermal conditions

The evolution of a fault's frictional strength during the interseismic period is a critical component of the earthquake cycle, yet there have been relatively few studies that examine the time-dependent evolution of strength at conditions representative of seismogenic depths. Using a simulated fault in Westerly granite, we examined how frictional strength evolves under hydrothermal conditions up to
Authors
Tamara Nicole Jeppson, David A. Lockner, Nicholas M. Beeler, Diane E. Moore

Evidence of Seattle Fault earthquakes from patterns of deep-seated landslides

Earthquake‐induced landslides can record information about the seismic shaking that generated them. In this study, we present new mapping, Light Detection and Ranging‐derived roughness dating, and analysis of over 1000 deep‐seated landslides from the Puget Lowlands of Washington, U.S.A., to probe the landscape for past Seattle fault earthquake information. With this new landslide inventory, we obs
Authors
Erich Herzig, Alison Duvall, Adam Booth, Ian Patrick Stone, Erin Wirth, Sean Richard LaHusen, Joseph Wartman, Alex R. R. Grant

Improved computational methods for probabilistic liquefaction hazard analysis

Current procedures for analysis of and design against liquefaction hazards focus primarily on the use of probabilistic ground motions at a single ground-shaking hazard level, with the cyclic loading represented by a peak ground acceleration (PGA) corresponding to a target return period and a single representative moment magnitude Mw. These parameters are typically used in conjunction with determin
Authors
Andrew James Makdisi, Steven L. Kramer

Rapid surface rupture mapping from satellite data: The 2023 Kahramanmaraş, Turkey (Türkiye), earthquake sequence

The 6 February 2023 Kahramanmaraş, Turkey (Türkiye), earthquake sequence produced > 500 km of surface rupture primarily on the left‐lateral East Anatolian (~345 km) and Çardak (~175 km) faults. Constraining the length and magnitude of surface displacement on the causative faults is critical for loss estimates, recovery efforts, rapid identification of impacted infrastructure, and fault displacemen
Authors
Nadine G. Reitman, Richard W. Briggs, William D. Barnhart, Alexandra Elise Hatem, Jessica Ann Thompson Jobe, Christopher DuRoss, Ryan D. Gold, John David Mejstrik, Camille Collett, Richard D Koehler, Sinan Akçiz

Increasing ocean wave energy observed in Earth’s seismic wavefield since the late 20th century

Ocean waves excite continuous globally observable seismic signals. We use data from 52 globally distributed seismographs to analyze the vertical component primary microseism wavefield at 14–20 s period between the late 1980s and August 2022. This signal is principally composed of Rayleigh waves generated by ocean wave seafloor tractions at less than several hundred meters depth, and is thus a prox
Authors
Richard C. Aster, Adam T. Ringler, Robert E. Anthony, Thomas A. Lee

The 1886 Charleston, South Carolina, Earthquake: Relic railroad offset reveals rupture

In the absence of documented surface rupture during the 1 September 1886 Charleston earthquake, there has been considerable speculation about the location and mechanism of the causative fault. We use an inferred coseismic offset of the South Carolina Railroad and additional numerical constraints to develop an elastic deformation model—a west‐dipping fault following strands of two previously identi
Authors
Roger Bilham, Susan E. Hough

Episodic evolution of a protracted convergent margin revealed by detrital zircon geochronology in the Greater Caucasus

Convergent margins play a fundamental role in the construction and modification of Earth's lithosphere and are characterized by poorly understood episodic processes that occur during the progression from subduction to terminal collision. On the northern margin of the active Arabia-Eurasia collision zone, the Greater Caucasus Mountains provide an opportunity to study a protracted convergent margin
Authors
Dylan A Vasey, Leslie Garcia, Eric S. Cowgill, Charles Cashman Trexler, Tea Godoladze