Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7174

Ambient seismic noise tomography of the Kingdom of Saudi Arabia

Harrat Rahat is a Cenozoic volcanic field in the west-central part of the Kingdom of Saudi Arabia, 150 kilometers east of the Red Sea, and is the site of the most recent eruption in the country (1256 C.E.; 654 in the year of the Hijra). The city of Al Madīnah lies at the north end of Harrat Rahat, and its volcanic and seismic risks are frequently reassessed. In 2009 C.E. an earthquake swarm at Har
Authors
Francesco Civilini, Walter D. Mooney, Martha K. Savage, John Townend

Thickness of the Saudi Arabian crust

As part of a joint Saudi Geological Survey (SGS) and U.S. Geological Survey (USGS) project, we analyzed P-wave receiver functions from seismic stations covering most of the Kingdom of Saudi Arabia to map the thickness of the crust across the Arabia Plate. We present an update of crustal-thickness estimates and fill in gaps for the western Arabian Shield and the rifted margin at the Red Sea (the co
Authors
Alexander R. Blanchette, Simon L. Klemperer, Walter D. Mooney, Hani M. Zahran

Magnetotelluric investigation of northern Harrat Rahat, Kingdom of Saudi Arabia

Volcanism within the harrats (Arabic for “volcanic field”) of the Kingdom of Saudi Arabia includes at least one historical eruption occurring close to the holy city of Al Madīnah in 1256 C.E. As part of a volcanic- and seismic-hazard assessment of northern Harrat Rahat, magnetotelluric (MT) data were collected to investigate the structural setting of the area, the presence or absence of melt withi
Authors
Jared R. Peacock, Paul A. Bedrosian, Maher K. Al-Dhahry, Adel Shareef, Daniel W. Feucht, Cliff D. Taylor, Benjamin Bloss, Hani M. Zahran

The Saudi Geological Survey-U.S. Geological Survey northern Harrat Rahat project—Styles, rates, causes, and hazards of volcanism near Al Madīnah al Munawwarah, Kingdom of Saudi Arabia

Active volcanic systems pose serious hazards to people and property including inundation and incineration by lava, blanketing by tephra (volcanic ash), exposure to noxious volcanic gases, and damage from shallow earthquakes triggered by ascending molten material (magma). To improve understanding of volcanism and associated seismicity on the western Arabia Plate, the Saudi Geological Survey and the
Authors
Thomas W. Sisson, Andrew T. Calvert, Walter D. Mooney

The USGS 2023 Conterminous U.S. time‐independent earthquake rupture forecast

We present the 2023 U.S. Geological Survey time‐independent earthquake rupture forecast for the conterminous United States, which gives authoritative estimates of the magnitude, location, and time‐averaged frequency of potentially damaging earthquakes throughout the region. In addition to updating virtually all model components, a major focus has been to provide a better representation of epistemi

Authors
Edward H. Field, Kevin R. Milner, Alexandra Elise Hatem, Peter M. Powers, Fred Pollitz, Andrea L. Llenos, Yuehua Zeng, Kaj M. Johnson, Bruce E. Shaw, Devin McPhillips, Jessica Ann Thompson Jobe, Allison Shumway, Andrew J. Michael, Zheng-Kang Shen, Eileen L. Evans, Elizabeth H. Hearn, Charles Mueller, Arthur Frankel, Mark D. Petersen, Christopher DuRoss, Richard W. Briggs, Morgan T. Page, Justin Rubinstein, Julie A Herrick

Total shortening estimates across the western Greater Caucasus Mountains from balanced cross sections and area balancing

The Greater Caucasus orogen forms the northern edge of the Arabia-Eurasia collision zone. Although the orogen has long been assumed to exhibit dominantly thick-skinned style deformation via reactivation of high-angle extensional faults, recent work suggests the range may have accommodated several hundred kilometers or more of shortening since its ~30 Ma initiation, and this shortening may be accom
Authors
Charles Cashman Trexler, Eric S. Cowgill, Dylan A Vasey, Nathan A. Niemi

The 2022 Chaos Canyon landslide in Colorado: Insights revealed by seismic analysis, field investigations, and remote sensing

An unusual, high-alpine, rapid debris slide originating in ice-rich debris occurred on June 28, 2022, at 16:33:16 MDT at the head of Chaos Canyon, a formerly glacier-covered valley in Rocky Mountain National Park, CO, USA. In this study, we integrate eyewitness videos and seismic records of the event with meteorological data, field observations, pre- and post-event satellite imagery, and uncrewed
Authors
Kate E. Allstadt, Jeffrey A. Coe, Elaine Collins, Francis K. Rengers, Anne Mangeney, Scott M. Esser, Jana Pursley, William L. Yeck, John Bellini, Lance R. Brady

Panel review of Ground Motion Characterization Model in 2023 NSHM

The 2023 National Seismic Hazard Model (NSHM; Petersen et al., 2023) has two major components – a seismic source characterization (SSC) model and a ground motion characterization (GMC) model. The US Geological Survey (USGS) established separate panels to review and provide input on these two models. Both panels are advisory, meaning that they provide input on technical issues for consideration by
Authors
Jonathan P. Stewart, Norman A. Abrahamson, Gail M. Atkinson, John G. Anderson, Kenneth W. Campbell, Chris H. Cramer, Michael Kolaj, Grace Alexandra Parker

The lunar cratering chronology

This chapter provides an introduction to crater-size frequency distribution (CSFD) measurements and presents a review of the work performed on dating lunar geological units using CSFDs since the last New Views of the Moon volume (2006), including various volcanic and tectonic features, as well as individual impact craters. At the end of the chapter, implications for the new CSFD age determinations
Authors
Harald Hiesinger, Carolyn H. Van der Bogert, G. Michael, N. Schmedemann, W. Iqbal, Stuart J. Robbins, B. Ivanov, J.-P. Williams, M. Zanetti, J. Plescia, Lillian R. Ostrach, James W. Head III

Lunar mare basaltic volcanism: Volcanic features and emplacement processes

Volcanism is a fundamental process in the geological evolution of the Moon, providing clues to the composition and structure of the mantle, the location and duration of interior melting, the nature of convection and lunar thermal evolution. Progress in understanding volcanism has been remarkable in the short 60-year span of the Space Age. Before Sputnik 1 in 1957, the lunar farside was unknown, th
Authors
James W. Head III, Lionel Wilson, Harald Hiesinger, Carolyn H. Van der Bogert, Yuan Yuan Chen, James L. Dickson, Lisa Gaddis, Junichi Haruyama, Lauren Jozwiak, Erica Jawin, Chunlai Li, Jianzhong Liu, Tomokatsu Morota, Debra H. Needham, Lillian R. Ostrach, Carle M. Pieters, Tabb C. Prissel, Yuqi Qian, Lei Qiao, Malcolm R. Rutherford, David R. Scott, Jennifer L. Whitten, Long Xiao, Feng Zhang, Ouyang Ziyuan

Crustal block-controlled contrasts in deformation, uplift, and exhumation in the Santa Cruz Mountains, California, USA, imaged through apatite (U-Th)/He thermochronology and 3-D geological modeling

Deformation along strike-slip plate margins often accumulates within structurally partitioned and rheologically heterogeneous crustal blocks within the plate boundary. In these cases, contrasts in the physical properties and state of juxtaposed crustal blocks may play an important role in accommodation of deformation. Near the San Francisco Bay Area, California, USA, the Pacific−North American pla
Authors
Curtis William Baden, David L. Shuster, Jeremy H. Hourigan, Jared T. Gooley, Melanie Cahill, George E. Hilley

Time-dependent weakening of granite at hydrothermal conditions

The evolution of a fault's frictional strength during the interseismic period is a critical component of the earthquake cycle, yet there have been relatively few studies that examine the time-dependent evolution of strength at conditions representative of seismogenic depths. Using a simulated fault in Westerly granite, we examined how frictional strength evolves under hydrothermal conditions up to
Authors
Tamara Nicole Jeppson, David A. Lockner, Nicholas M. Beeler, Diane E. Moore