Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7188

The Alaska earthquake, March 27, 1964: Field investigations and reconstruction effort

One of the greatest geotectonic events of our time occurred in southern Alaska late in the afternoon of March 27, 1964. Beneath a leaden sky, the chill of evening was just settling over the Alaskan countryside. Light snow was falling on some communities. It was Good Friday, schools were closed, and the business day was ending. Suddenly without warning half of Alaska was rocked and jarred by the mo
Authors
Wallace R. Hansen, Edwin B. Eckel, William E. Schaem, Robert E. Lyle, Warren George, Genie Chance

The Alaska earthquake, March 27, 1964: regional effects

This is the third in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S.
Authors
David S. McCulloch, Samuel J. Tuthill, Wilson M. Laird, J. E. Case, D.F. Barnes, George Plafker, S. L. Robbins, Reuben Kachadoorian, Oscar J. Ferrians, Helen L. Foster, Thor N. V. Karlstrom, M. J. Kirkby, Anne V. Kirkby, Kirk W. Stanley

Gravity survey and regional geology of the Prince William Sound epicentral region, Alaska

Sedimentary and volcanic rocks of Mesozoic and early Tertiary age form a roughly arcuate pattern in and around Prince William Sound, the epicentral region of the Alaska earthquake of 1964. These rocks include the Valdez Group, a predominantly slate and graywacke sequence of Jurassic and Cretaceous age, and the Orca Group, a younger sequence of early Tertiary age. The Orca consists of a lower unit
Authors
J. E. Case, D.F. Barnes, George Plafker, S. L. Robbins

Calculations of upper-mantle velocity from published Soviet earthquake data

The lack of information on mantle velocities and crustal structure of the U.S.S.R. has led to a preliminary examination of published Soviet earthquake bulletins in the hope of deriving useful velocity and structure information from the data they contain. Mantle velocities deduced from earthquake data on several Russian earthquakes are in excellent agreement with results of Soviet deep seismic soun
Authors
Robert G. Rodriquez

A final report on computed magneto-telluric curves for hypothetical models of crustal structure

Several mathematical models were investigated to determine the capa-bilities of the magneto-telluric method for determining the resistivity structure of the earth's crust. The model parameters were based on the crust model proposed by Keller (1963). The mathematical technique used was developed by Cagniard (1953). The investigations indicate that a three-layer model approximation of the crust and
Authors
J.I. Pritchard

Effects of the earthquake of March 27, 1964, at Whittier, Alaska

Whittier, Alaska, lying at the western end of Passage Canal, is an ocean terminal of The Alaska Railroad. The earthquake that shook south-central Alaska at 5:36 p.m. (Alaska Standard Time) on March 27, 1964, took the lives of 13 persons and caused more than $5 million worth of damage to Government and private property at Whittier. Seismic motion lasted only 2½-3 minutes, but when it stopped the W
Authors
Reuben Kachadoorian

Effects of the earthquake of March 27, 1964, at Anchorage, Alaska

Anchorage, Alaska’s largest city, is about 80 miles west-northwest of the epicenter of the March 27 earthquake. Because of its size, Anchorage bore the brunt of property damage from the quake; it sustained greater losses than all the rest of Alaska combined. Damage was caused by direct seismic vibration, by ground cracks, and by landslides. Direct seismic vibration affected chiefly multistory buil
Authors
Wallace R. Hansen

Seismic-refraction measurements of crustal structure between Nevada Test Site and Ludlow, California

Seismic-refraction measurements from nuclear and chemical explosions were made along a line from the Nevada Test Site (NTS) to Ludlow, California, and additional recordings from nuclear explosions were made southward toward Calexico, California. The time of first arrivals from the Ludlow shotpoint is expressed as T0 = 0.00 + Δ/2.50 (assumed), T1 = 1.00 + Δ6.10, T2 = 2.81 + Δ/6.80, and T3 = 5.48 +
Authors
J. F. Gibbs, J.C. Roller

Geomagnetic polarity epochs

[No abstract available]
Authors
A. Cox, Richard R. Doell, G. Brent Dalrymple

A preliminary summary of a seismic-refraction survey in the vicinity of the Tonto Forest Observatory, Arizona

The U.S. Geological Survey complete d a seismic-refraction survey in the vicinity of the Tonto Forest Seismological Observatory (T.F.S.O.) in April and May 1964. More than 1200 km of reversed profiles were surveyed to determine the crustal structure and crustal and upper mantle velocities in this area. The purpose of this work was to provide information on wave-propagation paths of seismic events
Authors
J.C. Roller, W. H. Jackson, D. H. Warren, J. H. Healy