Identifying the Environmental Limits of Aquatic Species in Prairie Streams to Build Climate Resilience
Project Overview
Climate change and human activities are threatening many sensitive aquatic species in prairie streams across the Great Plains region. Researchers supported by this North Central CASC project will combine and analyze data collected independently by Great Plains states to identify thresholds of environmental change that may lead to species loss and changes in aquatic communities. This information can guide managers in deciding whether to resist, accept, or direct change in these ecosystems to protect organisms and ecosystem services.
Project Summary
Prairie streams provide economic, recreational, and municipal services for human society and critical habitat for aquatic organisms including fish, crayfish, and mussels. However, environmental conditions in and around these streams have been significantly altered by landcover conversion, road and dam construction, and climate change. Many organisms in streams are sensitive to these environmental changes, which often dictate where and when they can successfully survive. Yet, across the Great Plains, there is limited knowledge about thresholds in environmental conditions that cause some organisms to disappear from local habitat.
This research team will work with managers and conservation practitioners across Great Plains states to predict the level of environmental change that leads to changes in species composition across the region. Independent data collection efforts (stream monitoring data and data of aquatic species’ assemblages) across states in the Great Plains will be combined, analyzed, and summarized to identify these thresholds of environmental change and estimate the overall health of streams in prairie ecosystems.
Not all prairie stream organisms will be able to track their ideal environmental conditions, so on-the-ground management actions will be needed to promote the persistence of some species. Results from this project will provide essential data to guide management and decision-making on where and when to implement actions to deal with climate and human-induced shifts in the presence and composition of aquatic organisms.
- Source: USGS Sciencebase (id: 65f87398d34e97daac9ff535)
Project Overview
Climate change and human activities are threatening many sensitive aquatic species in prairie streams across the Great Plains region. Researchers supported by this North Central CASC project will combine and analyze data collected independently by Great Plains states to identify thresholds of environmental change that may lead to species loss and changes in aquatic communities. This information can guide managers in deciding whether to resist, accept, or direct change in these ecosystems to protect organisms and ecosystem services.
Project Summary
Prairie streams provide economic, recreational, and municipal services for human society and critical habitat for aquatic organisms including fish, crayfish, and mussels. However, environmental conditions in and around these streams have been significantly altered by landcover conversion, road and dam construction, and climate change. Many organisms in streams are sensitive to these environmental changes, which often dictate where and when they can successfully survive. Yet, across the Great Plains, there is limited knowledge about thresholds in environmental conditions that cause some organisms to disappear from local habitat.
This research team will work with managers and conservation practitioners across Great Plains states to predict the level of environmental change that leads to changes in species composition across the region. Independent data collection efforts (stream monitoring data and data of aquatic species’ assemblages) across states in the Great Plains will be combined, analyzed, and summarized to identify these thresholds of environmental change and estimate the overall health of streams in prairie ecosystems.
Not all prairie stream organisms will be able to track their ideal environmental conditions, so on-the-ground management actions will be needed to promote the persistence of some species. Results from this project will provide essential data to guide management and decision-making on where and when to implement actions to deal with climate and human-induced shifts in the presence and composition of aquatic organisms.
- Source: USGS Sciencebase (id: 65f87398d34e97daac9ff535)