Skip to main content
U.S. flag

An official website of the United States government

Experimental seawater-basalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals

January 1, 1981

Seawater and NaCl solutions were reacted with basalt (basalt glass and diabase) for several months at 300°C, 500 bars and a water/rock ratio of 10.

During reaction, seawater was significantly modified, increasing in Ca, H2S, CO2. SiO2, K. Fe, Mn. Ba, Al and H+, and decreasing in Mg and SO4. Basalt glass was completely replaced by smectite, wairakite, anhydrite and hematite, and diabase was partially replaced by mixed layered smectite-chlorite, anhydrite and magnetite (?). Diabase was altered more slowly than basalt glass and the corresponding changes in seawater chemistry were less pronounced.

Basalt glass reacted with a 0.45 m NaCl solution resulted in the formation of smectite, albite. truscottite and wairakite. Solutions from this experiment were characterized by a relatively high pH and dominated by Ca for Na exchange reactions. At no point in this experiment were heavy metals solubilized, in contrast to the seawater experiments. This behavior illustrates the fundamental importance of seawater chemistry to heavy-metal solubility; that is, the removal of Mg from seawater generates acidity which maintains heavy metals in solution. Apparently seawater chlorinity is not capable of enhancing heavy-metal solubility by chloride complexing.

Seafloor heavy-metal deposits can result from the following:

  1. Seawater-basalt interaction at moderate temperature (∼-300°C and high effective water/rock ratios; or
  2. at relatively high temperatures (∼-400°C) and low (e.g.< 10) water/rock ratios.
Publication Year 1981
Title Experimental seawater-basalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals
DOI 10.1016/0016-7037(81)90157-5
Authors W.E. Seyfried, J. L. Bischoff
Publication Type Article
Publication Subtype Journal Article
Series Title Geochimica et Cosmochimica Acta
Index ID 70011977
Record Source USGS Publications Warehouse