Identifying salt marsh shorelines from remotely sensed elevation data and imagery
Salt marshes are valuable ecosystems that are vulnerable to lateral erosion, submergence, and internal disintegration due to sea-level rise, storms, and sediment deficits. Because many salt marshes are losing area in response to these factors, it is important to monitor their lateral extent at high resolution over multiple timescales. In this study we describe two methods to calculate the location of the salt marsh shoreline. The Marsh Edge from Elevation Data (MEED) method uses remotely sensed elevation data to calculate an objective proxy for the shoreline of a salt marsh. This proxy is the abrupt change in elevation that usually characterizes the seaward edge of a salt marsh, designated the “marsh scarp.” It is detected as the maximum slope along a cross-shore transect between Mean High Water and Mean Tide Level. The method was tested using lidar topobathymetric and photogrammetric elevation data from Massachusetts, USA. The other method to calculate the salt marsh shoreline is the Marsh Edge by Image Processing (MEIP) method which finds the unvegetated/vegetated line. This method applies image classification techniques to multispectral imagery and elevation datasets for edge detection. The method was tested using aerial imagery and coastal elevation data from the Plum Island Estuary in Massachusetts, USA. Both methods calculate a line that closely follows the edge of vegetation seen in imagery. The root-mean-square deviation between the two methods within the test area is 0.6 meter. The two methods were compared to each other using high resolution Unmanned Aircraft Systems (UAS) data and to a heads-up digitized shoreline. The root-mean-square deviation was 0.6 meters between the two methods and less than 0.43 meters from the digitized shoreline. MEIP method was also applied to a lower resolution dataset to investigate the effect of horizontal resolution on the results. Both methods provide an accurate, efficient, and objective way to track salt marsh shorelines with spatially intensive data over large spatial scales, which is necessary to evaluate geomorphic change and wetland vulnerability
Citation Information
Publication Year | 2019 |
---|---|
Title | Identifying salt marsh shorelines from remotely sensed elevation data and imagery |
DOI | 10.3390/rs11151795 |
Authors | Amy S. Farris, Zafer Defne, Neil K. Ganju |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Remote Sensing |
Index ID | 70215406 |
Record Source | USGS Publications Warehouse |
USGS Organization | Woods Hole Coastal and Marine Science Center |