Skip to main content
U.S. flag

An official website of the United States government

Integrating bioavailability approaches into waste rock evaluations

March 26, 2006

The presence of toxic metals in soils affected by mining, industry, agriculture and urbanization, presents problems to human health, the establishment and maintenance of plant and animal habitats, and the rehabilitation of affected areas. A key to managing these problems is predicting the fraction of metal in a given soil that will be biologically labile, and potentially harmful ('bioavailable'). The molecular form of metals and metalloids, particularly the uncomplexed (free) form, controls their bioavailability and toxicity in solution. One computational approach for determining bioavailability, the biotic ligand model (BLM), takes into account not only metal complexation by ligands in solution, but also competitive binding of hardness cations (Ca 2+,Mg 2+,) and metal ions to biological receptor sites. The more direct approach to assess bioavailability is to explicitly measure the response of an organism to a contaminant. A number of microbial enzyme tests have been developed to assess the impact of pollution in a rapid and procedurally simple way. These different approaches in making bioavailability predictions may have value in setting landuse priorities, remediation goals, and habitat reclamation strategies.

Publication Year 2006
Title Integrating bioavailability approaches into waste rock evaluations
Authors James F. Ranville, E. P. Blumenstein, M. J. Adams, LaDonna M. Choate, Kathleen S. Smith, Thomas R. Wildeman
Publication Type Conference Paper
Publication Subtype Conference Paper
Index ID 70142990
Record Source USGS Publications Warehouse