Reconciling models and measurements of marsh vulnerability to sea level rise
Tidal marsh survival in the face of sea level rise (SLR) and declining sediment supply often depends on the ability of marshes to build soil vertically. However, numerical models typically predict survival under rates of SLR that far exceed field-based measurements of vertical accretion. Here, we combine novel measurements from seven U.S. Atlantic Coast marshes and data from 70 additional marshes from around the world to illustrate that—over continental scales—70% of variability in marsh accretion rates can be explained by suspended sediment concentratin (SSC) and spring tidal range (TR). Apparent discrepancies between models and measurements can be explained by differing responses in high marshes and low marshes, the latter of which accretes faster for a given SSC and TR. Together these results help bridge the gap between models and measurements, and reinforce the paradigm that sediment supply is the key determinant of wetland vulnerability at continental scales.
Citation Information
Publication Year | 2022 |
---|---|
Title | Reconciling models and measurements of marsh vulnerability to sea level rise |
DOI | 10.1002/lol2.10230 |
Authors | Daniel J. Coleman, Mark Schuerch, Stijn Temmerman, Glenn R. Guntenspergen, Christopher G. Smith, Matthew L. Kirwan |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Limnology and Oceanography Letters |
Index ID | 70227474 |
Record Source | USGS Publications Warehouse |
USGS Organization | Patuxent Wildlife Research Center; St. Petersburg Coastal and Marine Science Center; Eastern Ecological Science Center |