Skip to main content
U.S. flag

An official website of the United States government

Source region of a granite batholith: evidence from lower crustal xenoliths and inherited accessory minerals

January 1, 1992

Like many granites, the Late Cretaceous intrusives of the eastern Mojave Desert, California, have heretofore provided useful but poorly focused images of their source regions. New studies of lower crustal xenoliths and inherited accessory minerals are sharpening these images.

Xenoliths in Tertiary dykes in this region are the residues of an extensive partial melting event. Great diversity in their composition reflects initial heterogeneity (both igneous and sedimentary protoliths) and varying amounts of melt extraction (from <10% to >70%). Mineral assemblages and thermobarometry suggest that the melting event occurred at T≥750°C at a depth of about 40 km. Present-day Sr, Nd, and Pb isotopic ratios indicate a Mojave Proterozoic heritage, but unrealistic model ages demonstrate the late Phanerozoic adjustment of parent/daughter ratios. A link between these xenoliths and the Late Cretaceous granites, though not fully documented, is probable; in any case, they provide invaluable clues concerning a crustal melting event, recording information about nature of source material (heterogeneous, supracrustal-rich), conditions of melting (moderately deep, moderately high T, accompanied by partial dehydration), and melt extraction (highly variable, locally extensive).

The Old Woman-Piute granites contain a large fraction of inherited zircon and monazite. A SHRIMP ion probe investigation shows that these zircons record a Proterozoic history similar to that which affected the Mojave region. Zonation patterns in zircons, and to a lesser extent monazites and xenotimes, document multiple phases of igneous, metamorphic, and sedimentary growth and degradation, commonly several in a single grain. Low Y in portions of the cores of inherited zircons and monazites and in monazites and outer portions of zircons from the xenoliths appear to indicate growth in equilibrium with abundant garnet.

Publication Year 1992
Title Source region of a granite batholith: evidence from lower crustal xenoliths and inherited accessory minerals
DOI 10.1130/SPE272-p49
Authors Calvin F. Miller, John M. Hanchar, Joseph L. Wooden, Victoria C. Bennett, T. Mark Harrison, David A. Wark, David A. Foster
Publication Type Book Chapter
Publication Subtype Book Chapter
Series Title Special Papers of the Geological Society of America
Index ID 70243293
Record Source USGS Publications Warehouse