Skip to main content
U.S. flag

An official website of the United States government

Native Aquatic

Filter Total Items: 4

Understanding constraints on submersed vegetation distribution in a large, floodplain river: the role of water level fluctuations, water clarity and river geomorphology

Aquatic vegetation is a key component of large floodplain river ecosystems. In the Upper Mississippi River System (UMRS), there is a long-standing interest in restoring aquatic vegetation in areas where it has declined or disappeared. To better understand what constrains vegetation distribution in large river ecosystems and inform ongoing efforts to restore submersed aquatic vegetation (SAV), we...
link

Understanding constraints on submersed vegetation distribution in a large, floodplain river: the role of water level fluctuations, water clarity and river geomorphology

Aquatic vegetation is a key component of large floodplain river ecosystems. In the Upper Mississippi River System (UMRS), there is a long-standing interest in restoring aquatic vegetation in areas where it has declined or disappeared. To better understand what constrains vegetation distribution in large river ecosystems and inform ongoing efforts to restore submersed aquatic vegetation (SAV), we...
Learn More

Conservation and Restoration of Native Freshwater Mussels

Freshwater mussels are the most imperiled group of animals in North America, with 66% of species at risk. Mussel populations are declining globally, but the factors contributing to these declines are largely unknown. Habitat fragmentation and alteration, point- and non-point source pollution, navigation-related impacts, and exotic species introductions are thought to be responsible for mussel...
link

Conservation and Restoration of Native Freshwater Mussels

Freshwater mussels are the most imperiled group of animals in North America, with 66% of species at risk. Mussel populations are declining globally, but the factors contributing to these declines are largely unknown. Habitat fragmentation and alteration, point- and non-point source pollution, navigation-related impacts, and exotic species introductions are thought to be responsible for mussel...
Learn More

Hydroacoustic mapping of habitat for threatened and endangered native mussels in the Upper Mississippi River

Understanding the distribution of threatened and endangered freshwater mussels is needed to conserve and restore populations. Sampling for native freshwater mussels typically involves taking quadrat samples in soft substrates and counting the number of mussels in a defined area. However, this methodology is unsuitable for detecting populations of the Spectaclecase mussel ( Margaritifera monodonta...
link

Hydroacoustic mapping of habitat for threatened and endangered native mussels in the Upper Mississippi River

Understanding the distribution of threatened and endangered freshwater mussels is needed to conserve and restore populations. Sampling for native freshwater mussels typically involves taking quadrat samples in soft substrates and counting the number of mussels in a defined area. However, this methodology is unsuitable for detecting populations of the Spectaclecase mussel ( Margaritifera monodonta...
Learn More

Spatial Patterns of Native Freshwater Mussels in the Upper Mississippi River

Impact of UMESC Science This research aims to quantify spatial patterns of adult and juvenile (≤5 y of age) freshwater mussels across multiple scales based on systematic survey data from 4 reaches of the Upper Mississippi River (Navigation Pools 3, 5, 6, and 18). Resource managers can use this critical information about spatial structure to make informed river management decisions.
link

Spatial Patterns of Native Freshwater Mussels in the Upper Mississippi River

Impact of UMESC Science This research aims to quantify spatial patterns of adult and juvenile (≤5 y of age) freshwater mussels across multiple scales based on systematic survey data from 4 reaches of the Upper Mississippi River (Navigation Pools 3, 5, 6, and 18). Resource managers can use this critical information about spatial structure to make informed river management decisions.
Learn More