The National Elevation Dataset (NED) is the primary elevation data product produced and distributed by the USGS National 3D Elevation Program (3DEP). The NED provides seamless raster elevation data of the conterminous United States, Alaska, Hawaii, and the island territories.
What is Lidar data and where can I download it?
Light Detection and Ranging (lidar) is a technology used to create high-resolution models of ground elevation with a vertical accuracy of 10 centimeters (4 inches). Lidar equipment, which includes a laser scanner, a Global Positioning System (GPS), and an Inertial Navigation System (INS), is typically mounted on a small aircraft. The laser scanner transmits brief pulses of light to the ground surface. Those pulses are reflected or scattered back and their travel time is used to calculate the distance between the laser scanner and the ground.
Lidar data is initially collected as a “point cloud” of individual points reflected from everything on the surface, including structures and vegetation. To produce a “bare earth” Digital Elevation Model (DEM), structures and vegetation are stripped away.
The USGS is in the process of collecting lidar data for all of the U.S. and its territories (status map). Due to high cloud cover and remote locations, Interferometric Synthetic Aperture Radar (IfSAR)—rather than lidar—is being used in Alaska.
The National Map is the primary repository for USGS base geospatial data. Access lidar data using:
- 3DEP LidarExplorer – Point cloud data and lidar-derived DEMs
- The National Map Download Client
- The National Map Services
Learn more:
Related
What is the difference between lidar data and a digital elevation model (DEM)?
What types of elevation datasets are available, what formats do they come in, and where can I download them?
What is the coverage of 3D Elevation Program (3DEP) DEMs?
The National Elevation Dataset (NED) is the primary elevation data product produced and distributed by the USGS National 3D Elevation Program (3DEP). The NED provides seamless raster elevation data of the conterminous United States, Alaska, Hawaii, and the island territories.

Using bare-earth LiDAR imagery to reveal the Tahoe - Sierra frontal fault zone Lake Tahoe, California.
linkThis video provides a visual example of how airborne LiDAR (Light D
etection And Ranging) imagery penetrates dense forest cover to reveal
an active fault line not detectable with conventional aerial
photography. The video shows an aerial perspective of the range front
Mt. Tallac fault, which is one of five active faults that traverse
Using bare-earth LiDAR imagery to reveal the Tahoe - Sierra frontal fault zone Lake Tahoe, California.
linkThis video provides a visual example of how airborne LiDAR (Light D
etection And Ranging) imagery penetrates dense forest cover to reveal
an active fault line not detectable with conventional aerial
photography. The video shows an aerial perspective of the range front
Mt. Tallac fault, which is one of five active faults that traverse
The 3D Elevation Program and energy for the Nation
The National Map—New data delivery homepage, advanced viewer, lidar visualization
Comparing methods used by the U.S. Geological Survey Coastal and Marine Geology Program for deriving shoreline position from lidar data
3D Elevation Program—Virtual USA in 3D
USGS lidar science strategy—Mapping the technology to the science
Lidar base specification
Related
What is the difference between lidar data and a digital elevation model (DEM)?
What types of elevation datasets are available, what formats do they come in, and where can I download them?
What is the coverage of 3D Elevation Program (3DEP) DEMs?
The National Elevation Dataset (NED) is the primary elevation data product produced and distributed by the USGS National 3D Elevation Program (3DEP). The NED provides seamless raster elevation data of the conterminous United States, Alaska, Hawaii, and the island territories.
The National Elevation Dataset (NED) is the primary elevation data product produced and distributed by the USGS National 3D Elevation Program (3DEP). The NED provides seamless raster elevation data of the conterminous United States, Alaska, Hawaii, and the island territories.

Using bare-earth LiDAR imagery to reveal the Tahoe - Sierra frontal fault zone Lake Tahoe, California.
linkThis video provides a visual example of how airborne LiDAR (Light D
etection And Ranging) imagery penetrates dense forest cover to reveal
an active fault line not detectable with conventional aerial
photography. The video shows an aerial perspective of the range front
Mt. Tallac fault, which is one of five active faults that traverse
Using bare-earth LiDAR imagery to reveal the Tahoe - Sierra frontal fault zone Lake Tahoe, California.
linkThis video provides a visual example of how airborne LiDAR (Light D
etection And Ranging) imagery penetrates dense forest cover to reveal
an active fault line not detectable with conventional aerial
photography. The video shows an aerial perspective of the range front
Mt. Tallac fault, which is one of five active faults that traverse