Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 858

Procedure for calculating estimated ultimate recoveries of Bakken and Three Forks Formations horizontal wells in the Williston Basin

Estimated ultimate recoveries (EURs) are a key component in determining productivity of wells in continuous-type oil and gas reservoirs. EURs form the foundation of a well-performance-based assessment methodology initially developed by the U.S. Geological Survey (USGS; Schmoker, 1999). This methodology was formally reviewed by the American Association of Petroleum Geologists Committee on Resource
Authors
Troy A. Cook

Assessment of undiscovered oil resources in the Bakken and Three Forks Formations, Williston Basin Province, Montana, North Dakota, and South Dakota, 2013

Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered volumes of 7.4 billion barrels of oil, 6.7 trillion cubic feet of associated/dissolved natural gas, and 0.53 billion barrels of natural gas liquids in the Bakken and Three Forks Formations in the Williston Basin Province of Montana, North Dakota, and South Dakota.
Authors
Stephanie B. Gaswirth, Kristen R. Marra, Troy A. Cook, Ronald R. Charpentier, Donald L. Gautier, Debra K. Higley, Timothy R. Klett, Michael D. Lewan, Paul G. Lillis, Christopher J. Schenk, Marilyn E. Tennyson, Katherine J. Whidden

Input-form data for the U.S. Geological Survey assessment of the Devonian and Mississippian Bakken and Devonian Three Forks Formations of the U.S. Williston Basin Province, 2013

In 2013, the U.S. Geological Survey assessed the technically recoverable oil and gas resources of the Bakken and Three Forks Formations of the U.S. portion of the Williston Basin. The Bakken and Three Forks Formations were assessed as continuous and hypothetical conventional oil accumulations using a methodology similar to that used in the assessment of other continuous- and conventional-type asse
Authors
Stephanie B. Gaswirth, Kristen R. Marra, Troy A. Cook, Ronald R. Charpentier, Donald L. Gautier, Debra K. Higley, Timothy R. Klett, Michael D. Lewan, Paul G. Lillis, Christopher J. Schenk, Marilyn E. Tennyson, Katherine J. Whidden

Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate th
Authors
Yunjo Cho, Jang Mi Jin, Matthias Witt, Justin E. Birdwell, Jeong-Geol Na, Nam-Sun Roh, Sunghwan Kim

Map of assessed shale gas in the United States, 2012

The U.S. Geological Survey has compiled a map of shale-gas assessments in the United States that were completed by 2012 as part of the National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the U.S. Geological Survey quantitatively estimated potential volumes of undiscovered gas within shale-gas assessment units. These shale-gas assessment units are mapped, and s
Authors
Laura R. H. Biewick

Simplified stratigraphic cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado

Thirteen stratigraphic cross sections of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado are presented in this report. Originally published in a much larger and more detailed form by Self and others (2010), they are shown here in simplified, page-size versions that are easily accessed and used for presentation purposes. Modifications to the original versions include
Authors
John D. Dietrich, Ronald C. Johnson

Energy map of southwestern Wyoming - Energy data archived, organized, integrated, and accessible

The Wyoming Landscape Conservation Initiative (WLCI) focuses on conserving world-class wildlife resources while facilitating responsible energy development in southwestern Wyoming. To further advance the objectives of the WLCI long-term, science-based effort, a comprehensive inventory of energy resource and production data is being published in two parts. Energy maps, data, documentation and spati
Authors
Laura Biewick, Nicholas R. Jones, Anna B. Wilson

Critical analysis of world uranium resources

The U.S. Department of Energy, Energy Information Administration (EIA) joined with the U.S. Department of the Interior, U.S. Geological Survey (USGS) to analyze the world uranium supply and demand balance. To evaluate short-term primary supply (0–15 years), the analysis focused on Reasonably Assured Resources (RAR), which are resources projected with a high degree of geologic assurance and conside
Authors
Susan Hall, Margaret Coleman

Assessment of undiscovered conventional oil and gas resources of the Western Canada Sedimentary Basin, Canada, 2012

The U.S. Geological Survey recently completed a geoscience-based assessment of undiscovered oil and gas resources of provinces within the Western Canada Sedimentary Basin. The Western Canada Sedimentary Basin primarily comprises the (1) Alberta Basin Province of Alberta, eastern British Columbia, and the southwestern Northwest Territories; (2) the Williston Basin Province of Saskatchewan, southeas
Authors
Debra K. Higley

Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spec
Authors
Xiaoyan Cao, Justin E. Birdwell, Mark A. Chappell, Yuan Li, Joseph J. Pignatello, Jingdong Mao

Assessment of coal geology, resources, and reserve base in the Powder River Basin, Wyoming and Montana

Using a geology-based assessment methodology, the U.S. Geological Survey estimated in-place resources of 1.07 trillion short tons of coal in the Powder River Basin, Wyoming and Montana. Of that total, with a maximum stripping ratio of 10:1, recoverable coal was 162 billion tons. The estimate of economically recoverable resources was 25 billion tons.
Authors
David C. Scott, James A. Luppens