Skip to main content
U.S. flag

An official website of the United States government

Factors Affecting Water Quality

As the States implement practices to reduce nutrient and sediment to improve water quality, they want to understand the success of their efforts. The USGS conducts studies on the relation among land change, management practices, and changes in nutrients and sediment. The findings are used to help assess progress toward the Chesapeake Bay Program (CBP) water-quality goal and make needed adjustments

Filter Total Items: 60

Water Quality Monitoring to Inform Conservation Management, Fishing Creek, Clinton County, Pennsylvania

USGS conducted synoptic sampling of major-ion chemistry and the nitrogen and oxygen isotopic composition of nitrate in Fishing Creek during base flow to evaluate the occurrence and distribution of nutrients and to characterize biogeochemical processes.
link

Water Quality Monitoring to Inform Conservation Management, Fishing Creek, Clinton County, Pennsylvania

USGS conducted synoptic sampling of major-ion chemistry and the nitrogen and oxygen isotopic composition of nitrate in Fishing Creek during base flow to evaluate the occurrence and distribution of nutrients and to characterize biogeochemical processes.
Learn More

New studies reveal ecological importance of fine-scale groundwater connectivity for streams during drought

Stream ecosystems support vital resources that may be jeopardized by climate change and climate stressors such as drought.
link

New studies reveal ecological importance of fine-scale groundwater connectivity for streams during drought

Stream ecosystems support vital resources that may be jeopardized by climate change and climate stressors such as drought.
Learn More

Agricultural and Urban Management Practices have Hidden Costs and Benefits to Stream Health

The findings of the study highlight that management practices can have both hidden costs and benefits to fish and macroinvertebrates depending on regional and local factors like how many and what type of management practices are implemented.
link

Agricultural and Urban Management Practices have Hidden Costs and Benefits to Stream Health

The findings of the study highlight that management practices can have both hidden costs and benefits to fish and macroinvertebrates depending on regional and local factors like how many and what type of management practices are implemented.
Learn More

Phosphorus in the Susquehanna River may be tied to legacy sediment and changing pH

The Susquehanna River is the predominant source of freshwater and nutrients entering the Chesapeake Bay.
link

Phosphorus in the Susquehanna River may be tied to legacy sediment and changing pH

The Susquehanna River is the predominant source of freshwater and nutrients entering the Chesapeake Bay.
Learn More

Geospatial Analyses and Applications Core Technology Team

About the Research The Geospatial Analyses and Applications Core Technology Team (CTT) as part of the Environmental Health Program collaborates with teams across USGS to develop and apply geospatial analytical methods to answer broad-scale questions about source-sink and cause-effect relationships between contaminants and vulnerable communities.
link

Geospatial Analyses and Applications Core Technology Team

About the Research The Geospatial Analyses and Applications Core Technology Team (CTT) as part of the Environmental Health Program collaborates with teams across USGS to develop and apply geospatial analytical methods to answer broad-scale questions about source-sink and cause-effect relationships between contaminants and vulnerable communities.
Learn More

USGS Publications Summarize Water-Quality Trends and Drivers in Urban Streams After 10 Years of Monitoring in Fairfax County, Virginia

Issue : Degraded water quality and ecology in urban streams has been widely documented, but explanations of changing conditions over time are often unavailable. A 15-year collaborative urban stream monitoring effort between the Fairfax County Stormwater Planning Division and the U.S. Geological Survey (USGS) is ongoing and has begun to shed light on this complex issue. In a new USGS report by...
link

USGS Publications Summarize Water-Quality Trends and Drivers in Urban Streams After 10 Years of Monitoring in Fairfax County, Virginia

Issue : Degraded water quality and ecology in urban streams has been widely documented, but explanations of changing conditions over time are often unavailable. A 15-year collaborative urban stream monitoring effort between the Fairfax County Stormwater Planning Division and the U.S. Geological Survey (USGS) is ongoing and has begun to shed light on this complex issue. In a new USGS report by...
Learn More

Floodplains provide millions of dollars in benefits every year to people in the Chesapeake Bay and Delaware River watersheds

Issue: Floodplains provide important services to people by retaining sediments, nutrients, and floodwaters, thereby improving water quality and reducing flooding impacts. Having information on how the monetary benefit that floodplains provide varies across the Chesapeake Bay and Delaware River watersheds helps resource managers describe the benefits that floodplains provide in their current state...
link

Floodplains provide millions of dollars in benefits every year to people in the Chesapeake Bay and Delaware River watersheds

Issue: Floodplains provide important services to people by retaining sediments, nutrients, and floodwaters, thereby improving water quality and reducing flooding impacts. Having information on how the monetary benefit that floodplains provide varies across the Chesapeake Bay and Delaware River watersheds helps resource managers describe the benefits that floodplains provide in their current state...
Learn More

Pennsylvania and the Chesapeake Bay Watershed

USGS provides monitoring, analysis, modeling and research on streams and water quality to better understand the fate and transport of nutrients and sediment to the Susquehanna and other rivers, and their tributaries, and eventually to the Chesapeake Bay. Additional research focuses on emerging contaminants and other stressors that effect human and aquatic life in the watershed and estuary.
link

Pennsylvania and the Chesapeake Bay Watershed

USGS provides monitoring, analysis, modeling and research on streams and water quality to better understand the fate and transport of nutrients and sediment to the Susquehanna and other rivers, and their tributaries, and eventually to the Chesapeake Bay. Additional research focuses on emerging contaminants and other stressors that effect human and aquatic life in the watershed and estuary.
Learn More

New study evaluates effects of agricultural conservation practices on nitrogen in streams of the Chesapeake Bay

Issue: Adaptive management in support of Chesapeake Bay restoration is complicated by uncertainty about the effects of agricultural management practices on water quality. Despite increasing investment, effects of agricultural conservation practices on regional water quality remain difficult to quantify due to factors such as groundwater travel times, varying modes-of-action, and the general lack...
link

New study evaluates effects of agricultural conservation practices on nitrogen in streams of the Chesapeake Bay

Issue: Adaptive management in support of Chesapeake Bay restoration is complicated by uncertainty about the effects of agricultural management practices on water quality. Despite increasing investment, effects of agricultural conservation practices on regional water quality remain difficult to quantify due to factors such as groundwater travel times, varying modes-of-action, and the general lack...
Learn More

Observed monitoring data and predictive modelling help understand ongoing and future vulnerability of Chesapeake Bay watershed stream fish communities to climate and land-use change

Issue: The Chesapeake Bay Watershed (CBW) is experiencing effects of climate (warming temperatures and shifting precipitation patterns) and land-use/land-cover (LULC; transition from forest or agriculture to developed lands) change, and these trends are likely to continue under future scenarios of warming and population growth. Stream biodiversity may be vulnerable to ongoing and future climate...
link

Observed monitoring data and predictive modelling help understand ongoing and future vulnerability of Chesapeake Bay watershed stream fish communities to climate and land-use change

Issue: The Chesapeake Bay Watershed (CBW) is experiencing effects of climate (warming temperatures and shifting precipitation patterns) and land-use/land-cover (LULC; transition from forest or agriculture to developed lands) change, and these trends are likely to continue under future scenarios of warming and population growth. Stream biodiversity may be vulnerable to ongoing and future climate...
Learn More

Communicating stream fish vulnerability to climate change

We will develop a vulnerability assessment R Shiny web application and present to stakeholders. The stakeholder feedback will be summarized into a one page ‘lessons learned’ document that will assist researchers in designing effective climate change visualizations and an R markdown ‘quick start’ guide on R Shiny applications.
link

Communicating stream fish vulnerability to climate change

We will develop a vulnerability assessment R Shiny web application and present to stakeholders. The stakeholder feedback will be summarized into a one page ‘lessons learned’ document that will assist researchers in designing effective climate change visualizations and an R markdown ‘quick start’ guide on R Shiny applications.
Learn More

Improving Understanding and Coordination of Science Activities for Per- and Polyfluoroalkyl Substances (PFAS) in the Chesapeake Bay Watershed

Issue: Per- and polyfluoroalkyl substances (PFAS) have been manufactured and used in a variety of industries in the United States since the 1940s. PFAS are ubiquitous and persistent in the environment and have the potential to have adverse human and ecological health effects. The Chesapeake Bay Program (CBP) partnerships has concerns about how PFAS will affect the Chesapeake Bay ecosystem. The CBP...
link

Improving Understanding and Coordination of Science Activities for Per- and Polyfluoroalkyl Substances (PFAS) in the Chesapeake Bay Watershed

Issue: Per- and polyfluoroalkyl substances (PFAS) have been manufactured and used in a variety of industries in the United States since the 1940s. PFAS are ubiquitous and persistent in the environment and have the potential to have adverse human and ecological health effects. The Chesapeake Bay Program (CBP) partnerships has concerns about how PFAS will affect the Chesapeake Bay ecosystem. The CBP...
Learn More