Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 1857

Evidence of active Quaternary deformation on the Great Valley fault system near Winters, northern California

The Great Valley fault system defines the tectonic boundary between the Coast Ranges and the Central Valley in California, is active throughout the Quaternary, and has been the source of several significant (M > 6) historic earthquakes, including the 1983 M 6.5 Coalinga earthquake and the 1892 Vacaville–Winters earthquake sequence. However, the locations and geometries of individual faults in the
Authors
Charles Cashman Trexler, Alexander E. Morelan, Rufus D. Catchings, Mark Goldman, Jack Willard

The 2020 Westmorland, California earthquake swarm as aftershocks of a slow slip event sustained by fluid flow

Swarms are bursts of earthquakes without an obvious mainshock. Some have been observed to be associated with transient aseismic fault slip, while others are thought to be related to fluids. However, the association is rarely quantitative due to insufficient data quality. We use high-quality GPS/GNSS, InSAR, and relocated seismicity to study a swarm of >2,000 earthquakes which occurred between 30 S
Authors
K. Sirorattanakul, Z.E. Ross, M. Khoshmanesh, Elizabeth S. Cochran, M. Acosta, J.-P. Avouac

Probing the upper end of intracontinental earthquake magnitude: A prehistoric example from the Dzhungarian and Lepsy faults of Kazakhstan

The study of surface ruptures is key to understanding the earthquake occurrence of faults especially in the absence of historical events. We present a detailed analysis of geomorphic displacements along the Dzhungarian Fault, which straddles the border of China and Kazakhstan. We use digital elevation models derived from structure-from-motion analysis of Pléiades satellite imagery and drone imager
Authors
Chia-Hsin Tsai, Kanatbek Abdrakhmatov, Aidyn Mukambayev, Austin John Elliott, John R. Elliott, Christoph Grützner, Edward J. Rhodes, A. H. Ivester, R. T. Walker, Roberta Wilkinson

Physical properties of the crust influence aftershock locations

Aftershocks do not uniformly surround a mainshock, and instead occur in spatial clusters. Spatially variable physical properties of the crust may influence the spatial distribution of aftershocks. I study four aftershock sequences in Southern California (1992 Landers, 1999 Hector Mine, 2010 El Mayor—Cucapah, and 2019 Ridgecrest) to investigate which physical properties are spatially correlated wit
Authors
Jeanne L. Hardebeck

Survey of fragile geologic features and their quasi-static earthquake ground-motion constraints, southern Oregon

Fragile geologic features (FGFs), which are extant on the landscape but vulnerable to earthquake ground shaking, may provide geological constraints on the intensity of prior shaking. These empirical constraints are particularly important in regions such as the Pacific Northwest that have not experienced a megathrust earthquake in written history. Here, we describe our field survey of FGFs in south
Authors
Devin McPhillips, Katherine Scharer

Monitoring offshore CO2 sequestration using marine CSEM methods; constraints inferred from field- and laboratory-based gas hydrate studies

Offshore geological sequestration of CO2 offers a viable approach for reducing greenhouse gas emissions into the atmosphere. Strategies include injection of CO2 into the deep-ocean or ocean-floor sediments, whereby depending on pressure–temperature conditions, CO2 can be trapped physically, gravitationally, or converted to CO2 hydrate. Energy-driven research continues to also advance CO2-for-CH4 r
Authors
Steven Constable, Laura A. Stern

Limits to coseismic landslides triggered by Cascadia Subduction Zone earthquakes

Landslides are a significant hazard and dominant feature throughout the landscape of the Pacific Northwest. However, the hazard and risk posed by coseismic landslides triggered by great Cascadia Subduction Zone (CSZ) earthquakes is highly uncertain due to a lack of local and global data. Despite a wealth of other geologic evidence for past earthquakes on the Cascadia Subduction Zone, no landslides
Authors
Alex R. R. Grant, William Struble, Sean Richard LaHusen

What to expect when you are expecting earthquake early warning

We present a strategy for earthquake early warning (EEW) alerting that focuses on providing users with a target level of performance for their shaking level of interest (for example, ensuring that users receive warnings for at least 95 per cent of the occurrences of that shaking level). We explore the factors that can affect the accuracy of EEW shaking forecasts including site conditions (which ca
Authors
Sarah E. Minson, Elizabeth S. Cochran, Jessie Kate Saunders, Sara McBride, Stephen Wu, Annemarie S. Baltay, Kevin R. Milner

A study on the effect of site response on California seismic hazard map assessment

Prior studies have repeatedly shown that probabilistic seismic hazard maps from several different countries predict higher shaking than that observed. Previous map assessments have not, however, considered the influence of site response on hazard. Seismologists have long acknowledged the influence of near-surface geology, in particular low-impedance sediment layers, on earthquake ground-motion at
Authors
Molly M. Gallahue, Leah Marschall Salditch, Madeleine C. Lucas, James S. Neely, Seth Stein, Norman A. Abrahamson, Tessa Williams, Susan E. Hough

Testing the ShakeAlert earthquake early warning system using synthesized earthquake sequences

We test the behavior of the United States (US) West Coast ShakeAlert earthquake early warning (EEW) system during temporally close earthquake pairs to understand current performance and limitations. We consider performance metrics based on source parameter and ground‐motion forecast accuracy, as well as on alerting timeliness. We generate ground‐motion times series for synthesized earthquake seque
Authors
Maren Böse, Jennifer Andrews, Colin T O'Rourke, Deborah L. Kilb, Angela Lux, Julian Bunn, Jeffrey McGuire

Spatially continuous models of aleatory variability in seismic site response for southern California

We develop an empirical, spatially continuous model for the single-station within-event (ϕSS) component of earthquake ground motion variability in the Los Angeles area. ϕSS represents event-to-event variability in site response or remaining variability due to path effects not captured by ground motion models. Site-specific values of ϕSS at permanent seismic network stations were estimated during o
Authors
Grace Alexandra Parker, Annemarie S. Baltay, Eric M. Thompson