Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 1857

Geodetic slip model of the 2011 M9.0 Tohoku earthquake

The three-dimensional crustal displacement field as sampled by GPS is used to determine the coseismic slip of the 2011 M9.0 Tohoku Earthquake. We employ a spherically layered Earth structure and use a combination of onland GPS, out to ∼4000 km from the rupture, and offshore GPS, which samples the high-slip region on the interplate boundary along the Japan trench. Inversion of the displacement fiel
Authors
Fred Pollitz, Roland Burgmann, Paramesh Banerjee

Earthquake sounds

No abstract available.
Authors
Andrew J. Michael

Seismic seiches

Seismic seiche is a term first used by Kvale (1955) to discuss oscillations of lake levels in Norway and England caused by the Assam earthquake of August 15, 1950. This definition has since been generalized to apply to standing waves set up in closed, or partially closed, bodies of water including rivers, shipping channels, lakes, swimming pools and tanks due to the passage of seismic waves from a
Authors
Arthur McGarr

Ground-Motion Prediction Equations (GMPEs) from a global dataset: The PEER NGA equations

The PEER NGA ground-motion prediction equations (GMPEs) were derived by five developer teams over several years, resulting in five sets of GMPEs. The teams used various subsets of a global database of ground motions and metadata from shallow earthquakes in tectonically active regions in the development of the equations. Since their publication, the predicted motions from these GMPEs have been comp
Authors
David M. Boore

Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake

The April 4, 2010 (Mw7.2), El Mayor-Cucapah, Baja California, Mexico, earthquake is the strongest earthquake to shake the Salton Trough area since the 1992 (Mw7.3) Landers earthquake. Similar to the Landers event, ground-surface fracturing occurred on multiple faults in the trough. However, the 2010 event triggered surface slip on more faults in the central Salton Trough than previous earthquakes,
Authors
Michael J. Rymer, Jerome A. Treiman, Katherine J. Kendrick, James J. Lienkaemper, Ray J. Weldon, Roger G. Bilham, Meng Wei, Eric J. Fielding, Janis L. Hernandez, Brian P.E. Olson, Pamela J. Irvine, Nichole Knepprath, Robert R. Sickler, Xiaopeng Tong, Martin E. Siem

Seismic hazard maps for Haiti

We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard
Authors
Arthur Frankel, Stephen Harmsen, Charles Mueller, Eric Calais, Jennifer Haase

Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San
Authors
Mark Zoback, Stephen Hickman, William Ellsworth

Representation of bidirectional ground motions for design spectra in building codes

The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all direc
Authors
Jonathan P. Stewart, Norman A. Abrahamson, Gail M. Atkinson, Jack W. Beker, David M. Boore, Yousef Bozorgnia, Kenneth W. Campbell, Craig D. Comartin, I.M. Idriss, Marshall Lew, Michael Mehrain, Jack P. Moehle, Farzad Naeim, Thomas A. Sabol

Regional correlations of VS30 averaged over depths less than and greater than 30 meters

Using velocity profiles from sites in Japan, California, Turkey, and Europe, we find that the time-averaged shear-wave velocity to 30 m (VS30), used as a proxy for site amplification in recent ground-motion prediction equations (GMPEs) and building codes, is strongly correlated with average velocities to depths less than 30 m (VSz, with z being the averaging depth). The correlations for sites in J
Authors
David M. Boore, Eric M. Thompson, Héloïse Cadet

Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice

The ground-motion prediction equations (GMPEs) developed as part of the Next Generation Attenuation of Ground Motions (NGA-West) project in 2008 are becoming widely used in seismic hazard analyses. However, these new models are considerably more complicated than previous GMPEs, and they require several more input parameters. When employing the NGA models, users routinely face situations in which s
Authors
James Kaklamanos, Laurie G. Baise, David M. Boore

Using the 2011 Mw9.0 Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure

The 11 March 2011 Tohoku Earthquake provides an unprecedented test of the extent to which Coulomb stress transfer governs the triggering of aftershocks. During 11-31 March, there were 177 aftershocks with focal mechanisms, and so the Coulomb stress change imparted by the rupture can be resolved on the aftershock nodal planes to learn whether they were brought closer to failure. Numerous source mod
Authors
Shinji Toda, Jian Lin, Ross S. Stein

Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models

Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and Pitarka (2010
Authors
Robert W. Graves, Brad T. Aagaard