Skip to main content
U.S. flag

An official website of the United States government

Publications

Below is a list of the most recent EROS peer-reviewed scientific papers, reports, fact sheets, and other publications. You can search all our publication holdings by type, topic, year, and order.

After selecting any set of these criteria, click "Apply Filter" to view the search results.

Filter Total Items: 2442

Landsat-5 bumper-mode geometric correction

The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring addit
Authors
James C. Storey, Michael J. Choate

Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration

Launched in April 1999, the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument is in its sixth year of operation. The ETM+ instrument has been the most stable of any of the Landsat instruments. To date, the best onboard calibration source for the reflective bands has been the Full Aperture Solar Calibrator, a solar-diffuser-based system, which has indicated changes of between 1% to 2% per y
Authors
B. L. Markham, K. J. Thome, J. A. Barsi, E. Kaita, Dennis L. Helder, J. L. Barker, Pat Scaramuzza

Landsat sensor performance: history and current status

The current Thematic Mapper (TM) class of Landsat sensors began with Landsat-4, which was launched in 1982. This series continued with the nearly identical sensor on Landsat-5, launched in 1984. The final sensor in the series was the Landsat-7 Enhanced Thematic Mapper Plus (ETM+), which was carried into orbit in 1999. Varying degrees of effort have been devoted to the characterization of these ins
Authors
B. L. Markham, James C. Storey, Darrel L. Williams, J. R. Irons

Understanding the drivers of agricultural land use change in south-central Senegal

Described is (1) the land use and land cover changes that have taken place in the Department of Velingara, an area of tropical dry woodland in south-central Senegal, (2) the biophysical and socio-economic drivers of those changes with an emphasis on transition to agricultural use, and (3) an assessment of the likelihood of intensification of agriculture in the Department. Results indicate that lan
Authors
E. C. Wood, G. Gray Tappan, Amadou Hadj

The social context of carbon sequestration: considerations from a multi-scale environmental history of the Old Peanut Basin of Senegal

This paper presents the results of a multi-scale investigation of environmental change in the Old Peanut Basin of Senegal throughout the 20th century. Based on historical accounts, ethnographies, aerial photos, satellite images, field and household surveys as well as various participatory research activities with farmers in selected villages, the study attempts to make explicit layered scales of a
Authors
P. Tschakert, G. Tappan

Sequestration of carbon in soil organic matter in Senegal: an overview

Sequestration of Carbon in Soil Organic Matter (SOCSOM) in Senegal is a multi-disciplinary development project planned and refined through two international workshops. The project was implemented by integrating a core of international experts in remote sensing, biogeochemical modeling, community socio-economic assessments, and carbon measurements in a fully collaborative manner with Senegal organi
Authors
Larry L. Tieszen, G. Gray Tappan, A. Toure

Ecological impact of historical and future land-use patterns in Senegal

The CENTURY model was used to simulate changes in total system carbon resulting from land-use history (1850–2000), and impacts of climatic changes and improved land-use management practices in Senegal. Results show that 0.477 Gtons of carbon have been lost from 1850 to 2000. Improved management practices have the potential of increasing carbon levels by 0.116 Gtons from 2000 to 2100. Potential to
Authors
W. Parton, G. Gray Tappan, D. Ojima, P. Tschakert

Impacts of land use and climate change on carbon dynamics in south-central Senegal

Total carbon stock in vegetation and soils was reduced 37% in south-central Senegal from 1900 to 2000. The decreasing trend will continue during the 21st century unless forest clearing is stopped, selective logging dramatically reduced, and climate change, if any, relatively small. Developing a sustainable fuelwood and charcoal production system could be the most feasible and significant carbon se
Authors
Shu-Guang Liu, M. Kaire, Eric C. Wood, O. Diallo, Larry L. Tieszen

Ecoregions and land cover trends in Senegal

This study examines long-term changes in Senegal's natural resources. We monitor and quantify land use and land cover changes occurring across Senegal using nearly 40 years of satellite imagery, aerial surveys, and fieldwork. We stratify Senegal into ecological regions and present land use and land cover trends for each region, followed by a national summary. Results aggregated to the national lev
Authors
G. Gray Tappan, M. Sall, E.C. Wood, Matthew Cushing

A simplified diagnostic model of orographic rainfall for enhancing satellite-based rainfall estimates in data-poor regions

An extension of Sinclair's diagnostic model of orographic precipitation (“VDEL”) is developed for use in data-poor regions to enhance rainfall estimates. This extension (VDELB) combines a 2D linearized internal gravity wave calculation with the dot product of the terrain gradient and surface wind to approximate terrain-induced vertical velocity profiles. Slope, wind speed, and stability determine
Authors
Christopher C. Funk, Joel C. Michaelsen

Filling Landsat ETM+ SLC-off gaps using a segmentation model approach

The purpose of this article is to present a methodology for filling Landsat Scan Line Corrector (SLC)-off gaps with same-scene spectral data guided by a segmentation model. Failure of the SLC on the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) instrument resulted in a loss of approximately 25 percent of the spectral data. The missing data span across most of the image with scan gaps varying in s
Authors
Susan Maxwell