Skip to main content
U.S. flag

An official website of the United States government

Sage-grouse

Filter Total Items: 62

A user-friendly decision support tool for monitoring and managing greater sage-grouse populations

Researchers within the U.S. Geological Survey (USGS) and Colorado State University (CSU) worked with BLM and State Wildlife Agencies to develop a hierarchical population monitoring framework for managing greater sage-grouse ( Centrocercus urophasianus ) populations and the sagebrush ecosystems that they depend upon for survival and reproduction. This hierarchical population monitoring strategy now...
link

A user-friendly decision support tool for monitoring and managing greater sage-grouse populations

Researchers within the U.S. Geological Survey (USGS) and Colorado State University (CSU) worked with BLM and State Wildlife Agencies to develop a hierarchical population monitoring framework for managing greater sage-grouse ( Centrocercus urophasianus ) populations and the sagebrush ecosystems that they depend upon for survival and reproduction. This hierarchical population monitoring strategy now...
Learn More

Hierarchical Population Monitoring Framework for Greater Sage-Grouse

Greater sage-grouse ( Centrocercus urophasianus ) are at the center of state and national land use policies largely because of their unique life-history traits as an ecological indicator for health of sagebrush ecosystems. Researchers within the U.S. Geological Survey (USGS) and Colorado State University (CSU) worked with the Bureau of Land Management (BLM) and state wildlife agencies to develop a...
link

Hierarchical Population Monitoring Framework for Greater Sage-Grouse

Greater sage-grouse ( Centrocercus urophasianus ) are at the center of state and national land use policies largely because of their unique life-history traits as an ecological indicator for health of sagebrush ecosystems. Researchers within the U.S. Geological Survey (USGS) and Colorado State University (CSU) worked with the Bureau of Land Management (BLM) and state wildlife agencies to develop a...
Learn More

Influence of future climate scenarios on habitat and population dynamics of greater sage-grouse

Sagebrush ecosystems and sagebrush-dependent wildlife species are likely to experience more frequent extreme drought and temperature conditions with changing climate. Greater sage-grouse ( Centrocercus urophasianus ), an indicator species in sagebrush ecosystems, may experience habitat and population losses that are increasingly exacerbated by current and future climate change. However, the direct...
link

Influence of future climate scenarios on habitat and population dynamics of greater sage-grouse

Sagebrush ecosystems and sagebrush-dependent wildlife species are likely to experience more frequent extreme drought and temperature conditions with changing climate. Greater sage-grouse ( Centrocercus urophasianus ), an indicator species in sagebrush ecosystems, may experience habitat and population losses that are increasingly exacerbated by current and future climate change. However, the direct...
Learn More

A targeted annual warning system (TAWS) for identifying aberrant declines in greater sage-grouse populations

Land and wildlife managers require accurate estimates of sensitive species’ trends to help guide conservation decisions that maintain biodiversity and promote healthy ecosystems. Researchers within the U.S. Geological Survey (USGS) and Colorado State University (CSU) worked with the Bureau of Land Management (BLM) and State Wildlife Agencies to develop a hierarchical population monitoring...
link

A targeted annual warning system (TAWS) for identifying aberrant declines in greater sage-grouse populations

Land and wildlife managers require accurate estimates of sensitive species’ trends to help guide conservation decisions that maintain biodiversity and promote healthy ecosystems. Researchers within the U.S. Geological Survey (USGS) and Colorado State University (CSU) worked with the Bureau of Land Management (BLM) and State Wildlife Agencies to develop a hierarchical population monitoring...
Learn More

Understanding How Vehicular Traffic Impacts Sage-Grouse Populations In Wyoming

In 2021, the Fort Collins Science Center initiated a research effort to 1) assess how traffic in Wyoming has impacted sage-grouse population growth rates, 2) identify the spatial scales at which these effects are most evident, and 3) identify what levels of traffic result in sage-grouse population declines.
link

Understanding How Vehicular Traffic Impacts Sage-Grouse Populations In Wyoming

In 2021, the Fort Collins Science Center initiated a research effort to 1) assess how traffic in Wyoming has impacted sage-grouse population growth rates, 2) identify the spatial scales at which these effects are most evident, and 3) identify what levels of traffic result in sage-grouse population declines.
Learn More

Estimating road age and traffic volume for disturbance assessments in Wyoming

In 2021, the Fort Collins Science Center initiated a research effort to estimate road age and annual traffic volumes across the majority of roads in Wyoming for assessing impacts to wildlife. Data on roads often focus on the ‘where’ (for example, spatial features) but neglect the ‘when’ (for example, road age) or ‘how much’ (for example, traffic volume). Knowing these characteristics is critical...
link

Estimating road age and traffic volume for disturbance assessments in Wyoming

In 2021, the Fort Collins Science Center initiated a research effort to estimate road age and annual traffic volumes across the majority of roads in Wyoming for assessing impacts to wildlife. Data on roads often focus on the ‘where’ (for example, spatial features) but neglect the ‘when’ (for example, road age) or ‘how much’ (for example, traffic volume). Knowing these characteristics is critical...
Learn More

Road Ecology

Roads and their associated infrastructure can cause substantial and pervasive effects on adjacent ecosystems but are necessary for the movement and redistribution of goods, people, wealth, and natural resources in modern societies. The Fort Collins Science Center has initiated research looking at how roads and traffic may be impacting sagebrush ecosystems and the wildlife inhabiting them. This...
link

Road Ecology

Roads and their associated infrastructure can cause substantial and pervasive effects on adjacent ecosystems but are necessary for the movement and redistribution of goods, people, wealth, and natural resources in modern societies. The Fort Collins Science Center has initiated research looking at how roads and traffic may be impacting sagebrush ecosystems and the wildlife inhabiting them. This...
Learn More

Assessing the Proliferation, Connectivity, and Consequences of Invasive Fine Fuels on the Sagebrush Biome

Invasive annual grasses can replace native vegetation and alter fire behavior, impacting a range of habitats and species. A team of researchers from the U.S. Geological Survey, Colorado State University, the Bureau of Land Management, and the U.S. Fish and Wildlife Service are working to identify factors that influence changes in the distribution and abundance of invasive annual grasses (IAGs)...
link

Assessing the Proliferation, Connectivity, and Consequences of Invasive Fine Fuels on the Sagebrush Biome

Invasive annual grasses can replace native vegetation and alter fire behavior, impacting a range of habitats and species. A team of researchers from the U.S. Geological Survey, Colorado State University, the Bureau of Land Management, and the U.S. Fish and Wildlife Service are working to identify factors that influence changes in the distribution and abundance of invasive annual grasses (IAGs)...
Learn More

Prioritizing conifer removal for multi-species outcomes

Wildlife management is frequently conducted to benefit a single species, despite evidence that suggests such an approach often fails to adequately address the needs of other species within a region. Managing for multiple species’ habitat requirements is even more critical when large scale habitat management efforts change vegetation conditions at the landscape scale, or when management occurs at...
link

Prioritizing conifer removal for multi-species outcomes

Wildlife management is frequently conducted to benefit a single species, despite evidence that suggests such an approach often fails to adequately address the needs of other species within a region. Managing for multiple species’ habitat requirements is even more critical when large scale habitat management efforts change vegetation conditions at the landscape scale, or when management occurs at...
Learn More

Assessing invasive annual grass treatment efficacy across the sagebrush biome

We are using existing datasets that span broad spatial and temporal extents to model the efficacy of invasive annual grass treatments across the sagebrush biome and the influence of environmental factors on their success. The models we develop will be used to generate maps of predicted treatment efficacy across the biome, which will be integrated into the Land Treatment Exploration Tool for land...
link

Assessing invasive annual grass treatment efficacy across the sagebrush biome

We are using existing datasets that span broad spatial and temporal extents to model the efficacy of invasive annual grass treatments across the sagebrush biome and the influence of environmental factors on their success. The models we develop will be used to generate maps of predicted treatment efficacy across the biome, which will be integrated into the Land Treatment Exploration Tool for land...
Learn More

Creating range-wide predictive maps of Greater Sage-Grouse seasonal habitats

Through a collaborative effort with multiple state and federal agencies, university researchers, and individual stakeholders, we are producing a set of predictive seasonal habitat maps for greater sage-grouse ( Centrocercus urophasianus ) spanning the entirety of the species’ U.S. distribution. This is the largest habitat modeling effort of its kind for the species and uses a large, compiled...
link

Creating range-wide predictive maps of Greater Sage-Grouse seasonal habitats

Through a collaborative effort with multiple state and federal agencies, university researchers, and individual stakeholders, we are producing a set of predictive seasonal habitat maps for greater sage-grouse ( Centrocercus urophasianus ) spanning the entirety of the species’ U.S. distribution. This is the largest habitat modeling effort of its kind for the species and uses a large, compiled...
Learn More

Predicting Recovery of Sagebrush Ecosystems Across the Sage-grouse Range from Remotely Sensed Vegetation Data

USGS researchers are using remote-sensing and other broadscale datasets to study and predict recovery of sagebrush across the sage-grouse range, assessing influence of disturbance, restoration treatments, soil moisture, and other ecological conditions on trends in sagebrush cover. The results will be used to inform conservation prioritization models, economic analyses, climate change projections...
link

Predicting Recovery of Sagebrush Ecosystems Across the Sage-grouse Range from Remotely Sensed Vegetation Data

USGS researchers are using remote-sensing and other broadscale datasets to study and predict recovery of sagebrush across the sage-grouse range, assessing influence of disturbance, restoration treatments, soil moisture, and other ecological conditions on trends in sagebrush cover. The results will be used to inform conservation prioritization models, economic analyses, climate change projections...
Learn More