Skip to main content
U.S. flag

An official website of the United States government

Climate Change

Filter Total Items: 64

Coral Bleaching and Disease: Effects on Threatened Corals and Reefs

A severe disease - tentatively named stony coral tissue loss disease - is rapidly killing corals in the U.S. Virgin Islands. Scientists from the U.S. Geological Survey, the University of Puerto Rico, and the National Park Service are working together to better under the disease and determine if the disease affecting corals in the USVI is the same one that has been killing corals in Florida since...
link

Coral Bleaching and Disease: Effects on Threatened Corals and Reefs

A severe disease - tentatively named stony coral tissue loss disease - is rapidly killing corals in the U.S. Virgin Islands. Scientists from the U.S. Geological Survey, the University of Puerto Rico, and the National Park Service are working together to better under the disease and determine if the disease affecting corals in the USVI is the same one that has been killing corals in Florida since...
Learn More

Mangrove Migration Network

At the poleward marsh-mangrove ecotone, mangrove abundance and coverage is winter temperature-sensitive in that it oscillates in response to the frequency, duration, and/or intensity of extreme winter temperatures. Future winter climate change is expected to facilitate poleward mangrove range expansion at the expense of salt marshes in Texas, Louisiana, and parts of Florida.
link

Mangrove Migration Network

At the poleward marsh-mangrove ecotone, mangrove abundance and coverage is winter temperature-sensitive in that it oscillates in response to the frequency, duration, and/or intensity of extreme winter temperatures. Future winter climate change is expected to facilitate poleward mangrove range expansion at the expense of salt marshes in Texas, Louisiana, and parts of Florida.
Learn More

Incorporating Future Change into Current Conservation Planning: Evaluating Wetland Migration along the Gulf of Mexico under Alternative Sea-Level Rise and Urbanization Scenarios

More than half of contiguous U.S. coastal wetlands are located along the Gulf of Mexico coast. These highly-productive wetlands support many ecosystem goods and services and fish and wildlife habitat. Historically, coastal wetlands have adapted to sea-level changes via lateral and vertical movement on the landscape. As sea levels rise in the future, coastal wetlands will adapt and migrate landward...
link

Incorporating Future Change into Current Conservation Planning: Evaluating Wetland Migration along the Gulf of Mexico under Alternative Sea-Level Rise and Urbanization Scenarios

More than half of contiguous U.S. coastal wetlands are located along the Gulf of Mexico coast. These highly-productive wetlands support many ecosystem goods and services and fish and wildlife habitat. Historically, coastal wetlands have adapted to sea-level changes via lateral and vertical movement on the landscape. As sea levels rise in the future, coastal wetlands will adapt and migrate landward...
Learn More

Macroclimatic Controls of Coastal Wetland Ecosystem Structure and Function

At the global-scale, macroclimatic drivers govern ecosystem structure and function in tidal saline wetlands (e.g., salt marshes, mangrove forests, salt flats). However, global reviews and models for these ecosystems typically do not directly include climatic drivers. The objective of this research is to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure and...
link

Macroclimatic Controls of Coastal Wetland Ecosystem Structure and Function

At the global-scale, macroclimatic drivers govern ecosystem structure and function in tidal saline wetlands (e.g., salt marshes, mangrove forests, salt flats). However, global reviews and models for these ecosystems typically do not directly include climatic drivers. The objective of this research is to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure and...
Learn More

Geographical Trends in Ecosystem Function and Biodiversity of Wetlands as a Surrogate for Climate Change

Extreme drought and temperature in the southeastern United States may become more frequent in the future, and any extreme shifts in climate condition are likely to have effects on wetland ecosystem function. USGS research predicts the effects of climate change by shifts in function and biodiversity across existing climate gradients in baldcypress swamps.
link

Geographical Trends in Ecosystem Function and Biodiversity of Wetlands as a Surrogate for Climate Change

Extreme drought and temperature in the southeastern United States may become more frequent in the future, and any extreme shifts in climate condition are likely to have effects on wetland ecosystem function. USGS research predicts the effects of climate change by shifts in function and biodiversity across existing climate gradients in baldcypress swamps.
Learn More

Mississippi Coastal Improvements Program (MsCIP) - Adaptive Management and Monitoring Planning and Implementation

The Mississippi barrier islands are dynamic coastal landforms that are the first line of defense between the Gulf of Mexico and the Mississippi mainland coast. These islands are experiencing changes in structure (land area and habitat) and geomorphic processes (erosion and accretion) due to frequent intense storms, relative rise in sea level, and changes in sediment supply. A long-term monitoring...
link

Mississippi Coastal Improvements Program (MsCIP) - Adaptive Management and Monitoring Planning and Implementation

The Mississippi barrier islands are dynamic coastal landforms that are the first line of defense between the Gulf of Mexico and the Mississippi mainland coast. These islands are experiencing changes in structure (land area and habitat) and geomorphic processes (erosion and accretion) due to frequent intense storms, relative rise in sea level, and changes in sediment supply. A long-term monitoring...
Learn More

Past and Future Impacts of Sea Level Rise on Coastal Habitats and Species (FISCHS)

USGS aims to integrate biological and hydrological models to help develop management tools to deal with the projected ecological consequences of rising sea level in coastal south Florida.
link

Past and Future Impacts of Sea Level Rise on Coastal Habitats and Species (FISCHS)

USGS aims to integrate biological and hydrological models to help develop management tools to deal with the projected ecological consequences of rising sea level in coastal south Florida.
Learn More

Climate Change Effects on Coastal Marsh Foundation Species

Mangrove forests have migrated inland over the past few decades at many locations along the northern Gulf of Mexico coast. This expansion has been attributed to factors associated with climate change, such as increased salinity resulting from sea-level rise and longer intervals between winter freezes, which can kill cold-intolerant mangrove species.
link

Climate Change Effects on Coastal Marsh Foundation Species

Mangrove forests have migrated inland over the past few decades at many locations along the northern Gulf of Mexico coast. This expansion has been attributed to factors associated with climate change, such as increased salinity resulting from sea-level rise and longer intervals between winter freezes, which can kill cold-intolerant mangrove species.
Learn More

Evaluating Structural and Surface Elevation Recovery of Restored Mangroves

Hydrologic restoration is one of several approaches to rehabilitate mangroves on a large-scale. USGS evaluates how solely restoring tidal hydrologic flows affect the recovery of mangroves in Florida.
link

Evaluating Structural and Surface Elevation Recovery of Restored Mangroves

Hydrologic restoration is one of several approaches to rehabilitate mangroves on a large-scale. USGS evaluates how solely restoring tidal hydrologic flows affect the recovery of mangroves in Florida.
Learn More

Ecology of Greenhouse Gas Emissions from Coastal Wetlands

Wetlands have the potential to absorb large amounts of carbon dioxide via photosynthesis, and flooded soils have low oxygen levels which decrease rates of decomposition to promote the retention of soil carbon. However, the type of greenhouse gases emitted from wetlands varies by wetland type and soil condition. A suite of approaches are being used to assess fluxes of greenhouses gases, like...
link

Ecology of Greenhouse Gas Emissions from Coastal Wetlands

Wetlands have the potential to absorb large amounts of carbon dioxide via photosynthesis, and flooded soils have low oxygen levels which decrease rates of decomposition to promote the retention of soil carbon. However, the type of greenhouse gases emitted from wetlands varies by wetland type and soil condition. A suite of approaches are being used to assess fluxes of greenhouses gases, like...
Learn More

Stress Physiology, Scaling, and Water Use of Forested Wetland Trees and Stands

USGS investigates the eco-physiological responses of coastal forested wetland vegetation to envrionmental stressors, and what role vegetation may have in affecting local hydrological cycling as a result of these stressors.
link

Stress Physiology, Scaling, and Water Use of Forested Wetland Trees and Stands

USGS investigates the eco-physiological responses of coastal forested wetland vegetation to envrionmental stressors, and what role vegetation may have in affecting local hydrological cycling as a result of these stressors.
Learn More

Modeling Tidal Freshwater Forested Wetlands (TFFW) Habitat Changes for Land Management

As tidal freshwater forested wetlands - TFFWs - are influenced by salinty due to salt water intrusion, they may experience changes in plant community composition, growth, and productivity. Models are needed to predict vegetation community change or dieback, as well as changes in carbon sequestration and storage due to changing climate, drought, changes in freshwater discharge, elevated carbon...
link

Modeling Tidal Freshwater Forested Wetlands (TFFW) Habitat Changes for Land Management

As tidal freshwater forested wetlands - TFFWs - are influenced by salinty due to salt water intrusion, they may experience changes in plant community composition, growth, and productivity. Models are needed to predict vegetation community change or dieback, as well as changes in carbon sequestration and storage due to changing climate, drought, changes in freshwater discharge, elevated carbon...
Learn More
Was this page helpful?