Skip to main content
U.S. flag

An official website of the United States government

Data

Data produced by Woods Hole Coastal and Marine Science Center staff.

Filter Total Items: 230

Lifespan of marsh units in Eastern Shore of Virginia salt marshes

The lifespans of salt marshes in Atlantic-facing Eastern Shore of Virginia are calculated based on estimated sediment supply and sea-level rise (SLR) predictions, following the methodology of Ganju and others (2020). The salt marsh delineations are from Ackerman and others (2023). The SLR predictions are local estimates corresponding to increases of 0.3, 0.5 and 1.0 meter in global mean sea level

Lifespan of marsh units in Connecticut salt marshes

The lifespans of salt marshes in Connecticut are calculated based on estimated sediment supply and sea-level rise (SLR) predictions, following the methodology of Ganju and others (2020). The salt marsh delineations are from Ackerman and others (2023). The SLR predictions are local estimates corresponding to increases of 0.3, 0.5 and 1.0 meter in global mean sea level (GMSL) by 2100, as projected b

Beach foreshore slope for the East Coast of the United States

This data release contains foreshore slopes for primarily open-ocean sandy beaches along the East Coast of the United States (Maine through Florida). The slopes were calculated while extracting shoreline position from lidar point cloud data collected between 1997 and 2018. The shoreline positions have been previously published, but the slopes have not. A reference baseline was defined, and then 20

Topographic, bathymetric, and ground control data collected at Marconi Beach, Wellfleet, Massachusetts in March and April 2024.

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2024-016-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monito

Methane emissions associated with bald cypress knees across the Mississippi River Alluvial Valley

Data shows CH4 fluxes from the upper portion of cypress knees across various climate and flooding gradients of the North American Baldcypress Swamp Network in the Mississippi River Alluvial Valley. Climate data in the form of temperature, relative humidity, barometric pressure, and precipitation 3-days leading up to sampling date are also included. There various forms to calculate fluxes using con

Grain-size analysis data from sediment samples in support of oceanographic and water-quality measurements in the nearshore zone of Sandy Neck Beach, Cape Cod Bay, Massachusetts, collected in March and April, 2021

The U.S. Geological Survey Woods Hole Coastal and Marine Science Center collected data to assess cross-shore sediment transport prediction techniques in coastal models for a wave-dominated sandy coast. A quadpod was deployed on the seafloor in the nearshore zone of Sandy Neck Beach, Cape Cod Bay, MA in March 2021 to analyze water velocities near the seabed and the response of the seabed to these f

Topographic and bathymetric data, imagery, and ground control data collected at Head of the Meadow Beach, Truro, Massachusetts in February and March 2024

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the fiel

Time-series measurements of acoustic intensity, flow, pressure, water level, conductivity, temperature, and dissolved oxygen collected in a flooded cave at Cenote Bang, Yucatan Peninsula, Tulum, Mexico from March 25, 2018 to August 1, 2018

Natural flooded caves were accessed along the coastline of the Yucatan Peninsula (Quintana Roo, Mexico) to investigate how regional meteorologic and hydrologic processes control solute transport, mixing, and salinization in the coastal aquifer. Instruments were deployed to monitor environmental parameters within the Ox Bel Ha Cave System accessed through the sinkhole Cenote Bang. These efforts res

Supplementary data in support of oceanographic and water quality times-series measurements made at Thompsons Beach and Stone Harbor, NJ from September 2018 to February 2023

In 2012, Hurricane Sandy struck the Northeastern US causing devastation among coastal ecosystems. Post-hurricane marsh restoration efforts have included sediment deposition, planting of vegetation, and restoring tidal hydrology. The work presented here is part of a larger project funded by the National Fish and Wildlife Foundation (NFWF) to monitor the post-restoration ecological resilience of coa

Beach foreshore slope for the West Coast of the United States

This data release contains foreshore slopes for primarily open-ocean sandy beaches along the west coast of the United States (California, Oregon and Washington). The slopes were calculated while extracting shoreline position from lidar point cloud data collected between 2002 and 2011. The shoreline positions have been previously published, but the slopes have not. A reference baseline was defined

Lifespan of marsh units in New York salt marshes

Lifespan of salt marshes in New York are calculated using conceptual marsh units defined by Defne and Ganju (2018) and Welk and others (2019, 2020a, 2020b, 2020c). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are local estimates which correspond to the 0.3, 0.5, and 1.0 meter increase in Glo

Idealized COAWST model cases for testing sensitivity of sediment transport and marsh accretion to vegetation, wave, and sediment parameters

Marshes may drown if they are unable to accrete sediment at the rate of sea level rise, but predicting the rate of sediment accretion at different marshes is challenging because many processes (e.g. tidal range, wave frequency) and conditions (e.g. available sediment, vegetation density, shape of the marsh edge) impact it. The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST, Warner and ot