USGS scientists Kate Allstadt and Cynthia Gardner tell the story of the May 18, 1980 eruption of Mount St. Helens and how the catastrophic landslide, lateral blast, and lahar changed the landscape.
How high was Mount St. Helens before the May 18, 1980 eruption? How high was it after?
Before May 18, 1980, Mount St. Helens' summit altitude of 9,677 feet (2,950 meters) made it only the fifth highest peak in Washington State. It stood out handsomely, however, from surrounding hills because it rose thousands of feet above them and had a perennial cover of ice and snow. The peak rose more than 5,000 feet (1,524 meters) above its base, where the lower flanks merge with adjacent ridges.
On May 18, 1980, the volcano lost an estimated 3.4 billion cubic yards (0.63 cubic mile) of its cone (about 1,300 feet or 396 meters in height), leaving behind a horseshoe-shaped crater (open to the north), with the highest part of the crater rim on the southwestern side at 8,365 feet (2,550 meters) elevation.
Learn more:
Related
How far did the ash from Mount St. Helens travel?
How much ash was there from the May 18, 1980 eruption of Mount St. Helens?
What was the largest landslide in the United States? In the world?
How would an eruption of Mount Rainier compare to the 1980 eruption of Mount St. Helens?
What is the origin of the name "Mount St. Helens"?
How many eruptions have there been in the Cascades during the last 4,000 years?
What was the largest volcanic eruption in the 20th century?
Which volcanoes in the contiguous United States have erupted since the Nation was founded?
What was the most destructive volcanic eruption in the history of the United States?
USGS scientists Kate Allstadt and Cynthia Gardner tell the story of the May 18, 1980 eruption of Mount St. Helens and how the catastrophic landslide, lateral blast, and lahar changed the landscape.

A survey base station is established using a RTK-GPS receiver with mobile units to collect data points in and around the crater. Information will be used to monitor surface changes, deformation, erosion and aggradation inside the crater. This type of technology is precise to the centimeter. View is to the south of Mount St.
A survey base station is established using a RTK-GPS receiver with mobile units to collect data points in and around the crater. Information will be used to monitor surface changes, deformation, erosion and aggradation inside the crater. This type of technology is precise to the centimeter. View is to the south of Mount St.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
Photogrammetry is the science of making precise measurements by the use of photography. USGS geologist Angie Diefenbach describes how she uses a digital camera and computer software to understand the growth rate of lava domes during a volcanic eruption.
Photogrammetry is the science of making precise measurements by the use of photography. USGS geologist Angie Diefenbach describes how she uses a digital camera and computer software to understand the growth rate of lava domes during a volcanic eruption.
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.

USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.
USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.

Mount St. Helens soon after the May 18, 1980 eruption, as viewed from Johnston's Ridge.
Mount St. Helens soon after the May 18, 1980 eruption, as viewed from Johnston's Ridge.

Before the eruption of May 18, 1980, Mount St. Helens' elevation was 2,950 m (9,677 ft). View from the west, Mount Adams in distance. S. Fork Toutle River is valley in center of photo.
Mount Adams elevation is 3,745 m (12, 286 ft). Mount St. Helens was the smallest of five major volcanic peaks in Washington State.
Before the eruption of May 18, 1980, Mount St. Helens' elevation was 2,950 m (9,677 ft). View from the west, Mount Adams in distance. S. Fork Toutle River is valley in center of photo.
Mount Adams elevation is 3,745 m (12, 286 ft). Mount St. Helens was the smallest of five major volcanic peaks in Washington State.
Lawetlat'la—Mount St. Helens—Land in transformation
A 40-year story of river sediment at Mount St. Helens
Ten ways Mount St. Helens changed our world—The enduring legacy of the 1980 eruption
Field trip guide to Mount St. Helens, Washington—Recent and ancient volcaniclastic processes and deposits
2018 update to the U.S. Geological Survey national volcanic threat assessment
Field-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater
Mount St. Helens, 1980 to now—what’s going on?
30 cool facts about Mount St. Helens
Eruptions in the Cascade Range during the past 4,000 years
The Pleistocene eruptive history of Mount St. Helens, Washington, from 300,000 to 12,800 years before present
Geologic map of Mount St. Helens, Washington prior to the 1980 eruption
Pre-1980 eruptive history of Mount St. Helens, Washington
Related
How far did the ash from Mount St. Helens travel?
How much ash was there from the May 18, 1980 eruption of Mount St. Helens?
What was the largest landslide in the United States? In the world?
How would an eruption of Mount Rainier compare to the 1980 eruption of Mount St. Helens?
What is the origin of the name "Mount St. Helens"?
How many eruptions have there been in the Cascades during the last 4,000 years?
What was the largest volcanic eruption in the 20th century?
Which volcanoes in the contiguous United States have erupted since the Nation was founded?
What was the most destructive volcanic eruption in the history of the United States?
USGS scientists Kate Allstadt and Cynthia Gardner tell the story of the May 18, 1980 eruption of Mount St. Helens and how the catastrophic landslide, lateral blast, and lahar changed the landscape.
USGS scientists Kate Allstadt and Cynthia Gardner tell the story of the May 18, 1980 eruption of Mount St. Helens and how the catastrophic landslide, lateral blast, and lahar changed the landscape.

A survey base station is established using a RTK-GPS receiver with mobile units to collect data points in and around the crater. Information will be used to monitor surface changes, deformation, erosion and aggradation inside the crater. This type of technology is precise to the centimeter. View is to the south of Mount St.
A survey base station is established using a RTK-GPS receiver with mobile units to collect data points in and around the crater. Information will be used to monitor surface changes, deformation, erosion and aggradation inside the crater. This type of technology is precise to the centimeter. View is to the south of Mount St.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
Photogrammetry is the science of making precise measurements by the use of photography. USGS geologist Angie Diefenbach describes how she uses a digital camera and computer software to understand the growth rate of lava domes during a volcanic eruption.
Photogrammetry is the science of making precise measurements by the use of photography. USGS geologist Angie Diefenbach describes how she uses a digital camera and computer software to understand the growth rate of lava domes during a volcanic eruption.
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.

USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.
USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.

Mount St. Helens soon after the May 18, 1980 eruption, as viewed from Johnston's Ridge.
Mount St. Helens soon after the May 18, 1980 eruption, as viewed from Johnston's Ridge.

Before the eruption of May 18, 1980, Mount St. Helens' elevation was 2,950 m (9,677 ft). View from the west, Mount Adams in distance. S. Fork Toutle River is valley in center of photo.
Mount Adams elevation is 3,745 m (12, 286 ft). Mount St. Helens was the smallest of five major volcanic peaks in Washington State.
Before the eruption of May 18, 1980, Mount St. Helens' elevation was 2,950 m (9,677 ft). View from the west, Mount Adams in distance. S. Fork Toutle River is valley in center of photo.
Mount Adams elevation is 3,745 m (12, 286 ft). Mount St. Helens was the smallest of five major volcanic peaks in Washington State.