Skip to main content
U.S. flag

An official website of the United States government

Floods

Filter Total Items: 11

Post-Fire Sediment Research at the Pacific Coastal and Marine Science Center

The USGS Pacific Coastal and Marine Science Center (PCMSC) in Santa Cruz, California, has been growing our post-fire research contributions since 2017, through studies of post-fire sediment movement that address the Natural Hazards Mission Area objectives for understanding wildfire hazards.
link

Post-Fire Sediment Research at the Pacific Coastal and Marine Science Center

The USGS Pacific Coastal and Marine Science Center (PCMSC) in Santa Cruz, California, has been growing our post-fire research contributions since 2017, through studies of post-fire sediment movement that address the Natural Hazards Mission Area objectives for understanding wildfire hazards.
Learn More

Alaska Flood Staffs

The U.S. Geological Survey (USGS) uses observations of flooding in communities to monitor hazard conditions and support research by the USGS and its partners into a variety of hazard processes in Alaska. Local observations of flooding at a flood staffs are used to document flood elevations, improve flood models, and support floodplain management decisions.
link

Alaska Flood Staffs

The U.S. Geological Survey (USGS) uses observations of flooding in communities to monitor hazard conditions and support research by the USGS and its partners into a variety of hazard processes in Alaska. Local observations of flooding at a flood staffs are used to document flood elevations, improve flood models, and support floodplain management decisions.
Learn More

Planetary Defense

At the USGS Astrogeology Science Center we conduct research on Planetary Defense. Planetary Defense involves predicting potential impactors (asteroids, comets), and studying how to deflect or divert them, as well as the potential effects of an impact. Effects include short-term effects such as blast damage, but also long-term effects such as climate and social impacts.
link

Planetary Defense

At the USGS Astrogeology Science Center we conduct research on Planetary Defense. Planetary Defense involves predicting potential impactors (asteroids, comets), and studying how to deflect or divert them, as well as the potential effects of an impact. Effects include short-term effects such as blast damage, but also long-term effects such as climate and social impacts.
Learn More

Low-lying areas of tropical Pacific islands

Sea level is rising faster than projected in the western Pacific, so understanding how wave-driven coastal flooding will affect inhabited, low-lying islands—most notably, the familiar ring-shaped atolls—as well as the low-elevation areas of high islands in the Pacific Ocean, is critical for decision-makers in protecting infrastructure or relocating resources and people.
link

Low-lying areas of tropical Pacific islands

Sea level is rising faster than projected in the western Pacific, so understanding how wave-driven coastal flooding will affect inhabited, low-lying islands—most notably, the familiar ring-shaped atolls—as well as the low-elevation areas of high islands in the Pacific Ocean, is critical for decision-makers in protecting infrastructure or relocating resources and people.
Learn More

Coastal Storm Modeling System (CoSMoS)

The Coastal Storm Modeling System (CoSMoS) makes detailed predictions of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales. CoSMoS was developed for hindcast studies, operational applications and future climate scenarios to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety...
link

Coastal Storm Modeling System (CoSMoS)

The Coastal Storm Modeling System (CoSMoS) makes detailed predictions of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales. CoSMoS was developed for hindcast studies, operational applications and future climate scenarios to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety...
Learn More

Quantifying Flood Risk and Reef Risk Reduction Benefits in Florida and Puerto Rico: The Consequences of Hurricane Damage, Long-term Degradation, and Restoration Opportunities

Coastal flooding and erosion from extreme weather events affect thousands of vulnerable coastal communities; the impacts of coastal flooding are predicted to worsen during this century because of population growth and climate change. Hurricanes Irma and Maria in 2017 were particularly devasting to humans and natural communities. The coral reefs off the State of Florida and the Commonwealth of...
link

Quantifying Flood Risk and Reef Risk Reduction Benefits in Florida and Puerto Rico: The Consequences of Hurricane Damage, Long-term Degradation, and Restoration Opportunities

Coastal flooding and erosion from extreme weather events affect thousands of vulnerable coastal communities; the impacts of coastal flooding are predicted to worsen during this century because of population growth and climate change. Hurricanes Irma and Maria in 2017 were particularly devasting to humans and natural communities. The coral reefs off the State of Florida and the Commonwealth of...
Learn More

USGS science supporting the Elwha River Restoration Project

The Elwha River Restoration Project has reconnected the water, salmon, and sediment of a pristine river and coast of the Olympic Peninsula of Washington.
link

USGS science supporting the Elwha River Restoration Project

The Elwha River Restoration Project has reconnected the water, salmon, and sediment of a pristine river and coast of the Olympic Peninsula of Washington.
Learn More

CoSMoS 3.1: Central California

CoSMoS v3.1 for central California shows projections for future climate scenarios (sea-level rise and storms)
link

CoSMoS 3.1: Central California

CoSMoS v3.1 for central California shows projections for future climate scenarios (sea-level rise and storms)
Learn More

Estuarine Processes, Hazards, and Ecosystems

Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...
link

Estuarine Processes, Hazards, and Ecosystems

Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...
Learn More

ARkStorm Scenario

A modeled scenario of U.S. West Coast winter storm events induced by the formation of Atmospheric Rivers (AR) and capable of causing massive and devastating flooding.
link

ARkStorm Scenario

A modeled scenario of U.S. West Coast winter storm events induced by the formation of Atmospheric Rivers (AR) and capable of causing massive and devastating flooding.
Learn More
link

USGS Flood Inundation Mapper Usability Study

Making user-friendly interfaces.
Learn More
Was this page helpful?