Skip to main content
U.S. flag

An official website of the United States government

Drought, Fire and Extreme Weather

CASC-supported scientists throughout the country are working to understand how drought, fire and extreme weather are changing under climate change and how they are impacting important natural and cultural resources. Browse our science on these topics below.

Filter Total Items: 278

Foundational Science Area: Helping People and Nature Adapt to Climate Change in the North Central U.S.

The north-central region of the U.S. has experienced a series of extreme droughts in recent years, with impacts felt across a range of sectors. For example, the impacts of a 2002 drought are estimated to have resulted in a $3 billion loss to the agricultural sector in Nebraska and South Dakota. Meanwhile, the ecological impacts of drought in the region have included increased tree mortality, surge
link

Foundational Science Area: Helping People and Nature Adapt to Climate Change in the North Central U.S.

The north-central region of the U.S. has experienced a series of extreme droughts in recent years, with impacts felt across a range of sectors. For example, the impacts of a 2002 drought are estimated to have resulted in a $3 billion loss to the agricultural sector in Nebraska and South Dakota. Meanwhile, the ecological impacts of drought in the region have included increased tree mortality, surge
Learn More

How Does Drought Influence Fire Severity in the Southwestern U.S.?

There is a growing realization that current warming trends may be associated with increases in the size, frequency, and severity of forest fires in the West. While rising temperatures can create drought conditions that favor severe fires, it is also possible that drought limits the ability of trees to survive a fire. During a drought, there is less water available for trees and more outbreaks of h
link

How Does Drought Influence Fire Severity in the Southwestern U.S.?

There is a growing realization that current warming trends may be associated with increases in the size, frequency, and severity of forest fires in the West. While rising temperatures can create drought conditions that favor severe fires, it is also possible that drought limits the ability of trees to survive a fire. During a drought, there is less water available for trees and more outbreaks of h
Learn More

Identifying Tribal Vulnerabilities and Supporting Planning for Extreme Weather Events

Climate change is poised to increase the frequency and intensity of extreme weather events – such as tornadoes, flooding, drought, and snowstorms – which may damage buildings and other structures, cause economic hardship, disrupt plant and wildlife communities, and endanger people’s physical and emotional health. The purpose of this project was to enhance the knowledge of local tribal environmen
link

Identifying Tribal Vulnerabilities and Supporting Planning for Extreme Weather Events

Climate change is poised to increase the frequency and intensity of extreme weather events – such as tornadoes, flooding, drought, and snowstorms – which may damage buildings and other structures, cause economic hardship, disrupt plant and wildlife communities, and endanger people’s physical and emotional health. The purpose of this project was to enhance the knowledge of local tribal environmen
Learn More

Improving Understanding of Climate Extremes in the Southwestern United States

In the southwestern United States, droughts of 10 or more years are projected to become more frequent by 2100. It also is projected that there will be fewer wet days per year, with more precipitation falling on those wet days. Such climatic extremes can strongly affect wild animals and plants, ecosystems, and humans. In the Southwest, more frequent and intense storms may negatively affect protecte
link

Improving Understanding of Climate Extremes in the Southwestern United States

In the southwestern United States, droughts of 10 or more years are projected to become more frequent by 2100. It also is projected that there will be fewer wet days per year, with more precipitation falling on those wet days. Such climatic extremes can strongly affect wild animals and plants, ecosystems, and humans. In the Southwest, more frequent and intense storms may negatively affect protecte
Learn More

Linking Extreme Storms to Changes in Precipitation, Ecosystems, and Wildfire Patterns in the Sierra Nevada

The majority of the West Coast’s most extreme storms have been linked to atmospheric rivers, a meteorological phenomenon in which large amounts of moisture are carried in narrow bands from over the Pacific Ocean to western North America. While weak atmospheric rivers are critical providers of winter rain and snow, stronger events can cause extreme flooding, mudslides, and avalanches – leading to p
link

Linking Extreme Storms to Changes in Precipitation, Ecosystems, and Wildfire Patterns in the Sierra Nevada

The majority of the West Coast’s most extreme storms have been linked to atmospheric rivers, a meteorological phenomenon in which large amounts of moisture are carried in narrow bands from over the Pacific Ocean to western North America. While weak atmospheric rivers are critical providers of winter rain and snow, stronger events can cause extreme flooding, mudslides, and avalanches – leading to p
Learn More

Measurement of El Niño Southern Oscillation (ENSO)-related Climate Conditions and Ecosystem Responses in Hawaiʻi

As elevation increases, both temperature and moisture availability decrease. In many parts of the world, this decrease in temperature is a limiting factor for vegetation—at certain elevations, the temperature becomes too cold for plants to survive. However in the tropics, moisture availability may play a more important role than temperature in determining the altitude at which forests can grow. Fo
link

Measurement of El Niño Southern Oscillation (ENSO)-related Climate Conditions and Ecosystem Responses in Hawaiʻi

As elevation increases, both temperature and moisture availability decrease. In many parts of the world, this decrease in temperature is a limiting factor for vegetation—at certain elevations, the temperature becomes too cold for plants to survive. However in the tropics, moisture availability may play a more important role than temperature in determining the altitude at which forests can grow. Fo
Learn More

Nome Creek Boreal, Fire and Permafrost Hydrology investigations

The Nome Creek Experimental Watershed (NCEW) has been the site of multiple studies focused on understanding hydrology, biogeochemistry, and ecosystem changes related to permafrost thaw and fire in the boreal forest. The boreal forest is the Earth’s largest terrestrial biome, and thus plays a major role in biogeochemical cycling, creation of habitat for wildlife, as well as wilderness and resources
link

Nome Creek Boreal, Fire and Permafrost Hydrology investigations

The Nome Creek Experimental Watershed (NCEW) has been the site of multiple studies focused on understanding hydrology, biogeochemistry, and ecosystem changes related to permafrost thaw and fire in the boreal forest. The boreal forest is the Earth’s largest terrestrial biome, and thus plays a major role in biogeochemical cycling, creation of habitat for wildlife, as well as wilderness and resources
Learn More

Projecting the Effects of Climate Change on Aspen in the Central and Northern Rocky Mountains

Aspen is an environmentally, economically, and socially important species in the western U.S. It is typically the most abundant deciduous tree species in mountainous landscapes of the western U.S., providing food and habitat for a variety of wildlife, including black bear, deer, elk, moose, and numerous bird species. Aspen woodlands also provide high quality forage for livestock and draw tourists
link

Projecting the Effects of Climate Change on Aspen in the Central and Northern Rocky Mountains

Aspen is an environmentally, economically, and socially important species in the western U.S. It is typically the most abundant deciduous tree species in mountainous landscapes of the western U.S., providing food and habitat for a variety of wildlife, including black bear, deer, elk, moose, and numerous bird species. Aspen woodlands also provide high quality forage for livestock and draw tourists
Learn More

Science to Inform Management of Floodplain Conservation Lands in a Changing World

Recent extreme floods on the Mississippi and Missouri Rivers have motivated decision-makers and resource managers to expaned floodplain conservation lands. Within Missouri, there are more than 85,000 acres of public conservation lands in large-river floodplains. Floodplain lands are highly dynamic and challenging to manage, particularly climatic conditions change. These lands have the potential to
link

Science to Inform Management of Floodplain Conservation Lands in a Changing World

Recent extreme floods on the Mississippi and Missouri Rivers have motivated decision-makers and resource managers to expaned floodplain conservation lands. Within Missouri, there are more than 85,000 acres of public conservation lands in large-river floodplains. Floodplain lands are highly dynamic and challenging to manage, particularly climatic conditions change. These lands have the potential to
Learn More

The Available Science Assessment Process (ASAP): Evaluating the Science behind Climate Adaptation Actions

Climate change is one of the most pressing issues facing natural resource management. The disruptions it is causing require that we change the way we consider conservation and resource management in order to ensure the future of habitats, species, and human communities. Practitioners often struggle with how to identify and prioritize specific climate adaptation actions (CAAs). Management actions m
link

The Available Science Assessment Process (ASAP): Evaluating the Science behind Climate Adaptation Actions

Climate change is one of the most pressing issues facing natural resource management. The disruptions it is causing require that we change the way we consider conservation and resource management in order to ensure the future of habitats, species, and human communities. Practitioners often struggle with how to identify and prioritize specific climate adaptation actions (CAAs). Management actions m
Learn More

The Effects of Drought on Vegetation Phenology and Wildlife

Plants and animals undergo certain life cycle events every year, such as breeding or flowering. Known as phenology, these events are very sensitive to changes in climate. Changes in plant phenology can have cascading effects that impact the herbivore species that depend on the affected plants for food, such as elk, moose, and deer. Therefore, characterizing long term vegetation cycles can provide
link

The Effects of Drought on Vegetation Phenology and Wildlife

Plants and animals undergo certain life cycle events every year, such as breeding or flowering. Known as phenology, these events are very sensitive to changes in climate. Changes in plant phenology can have cascading effects that impact the herbivore species that depend on the affected plants for food, such as elk, moose, and deer. Therefore, characterizing long term vegetation cycles can provide
Learn More

Understanding Future Fire Frequency and Impacts on Species Distribution in the South Central U.S.

Fire is critical to maintaining and restoring temperate ecosystems in the South Central U.S. As precipitation patterns and temperatures change in the region, managers require information on how these changes will impact fire frequency, and thus the species and ecosystems within the landscape. To address this need, researchers will use climate model data to predict and map future changes in fire f
link

Understanding Future Fire Frequency and Impacts on Species Distribution in the South Central U.S.

Fire is critical to maintaining and restoring temperate ecosystems in the South Central U.S. As precipitation patterns and temperatures change in the region, managers require information on how these changes will impact fire frequency, and thus the species and ecosystems within the landscape. To address this need, researchers will use climate model data to predict and map future changes in fire f
Learn More