Skip to main content
U.S. flag

An official website of the United States government

Landscapes

From boreal forests to coral reefs, the United States is home to a plethora of diverse ecosystems, each of which faces different challenges under climate change. CASC-supported scientists are examining how landscapes of all types are being affected by changing temperature and precipitation patterns and how managers can best facilitate climate adaptation. Browse our projects by landscape below. 

Filter Total Items: 315

Projecting Future Climate Effects on Cottonwood and Willow Seed Dispersal and Tree Regeneration in Western Riparian Forests

Throughout western North America, warming associated with climate change is leading to both earlier spring peak streamflows and earlier seed dispersal, potentially reducing seedling establishment and in turn reducing the quality of riparian (near-river) forests, which provide critical habitat for diverse birds, mammals, reptiles, amphibians, and insects, and food and shade for fish and other aquat
link

Projecting Future Climate Effects on Cottonwood and Willow Seed Dispersal and Tree Regeneration in Western Riparian Forests

Throughout western North America, warming associated with climate change is leading to both earlier spring peak streamflows and earlier seed dispersal, potentially reducing seedling establishment and in turn reducing the quality of riparian (near-river) forests, which provide critical habitat for diverse birds, mammals, reptiles, amphibians, and insects, and food and shade for fish and other aquat
Learn More

Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions

Maintaining the native prairie lands of the Northern Great Plains (NGP), which provide an important habitat for declining grassland species, requires anticipating the effects of increasing atmospheric carbon dioxide (CO2) concentrations and climate change on the region’s vegetation. Specifically, climate change threatens NGP grasslands by increasing the potential encroachment of native woody speci
link

Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions

Maintaining the native prairie lands of the Northern Great Plains (NGP), which provide an important habitat for declining grassland species, requires anticipating the effects of increasing atmospheric carbon dioxide (CO2) concentrations and climate change on the region’s vegetation. Specifically, climate change threatens NGP grasslands by increasing the potential encroachment of native woody speci
Learn More

Quantifying the Effects of Climate Change on Mountain Pine Beetle Outbreaks and Subsequent Threats to Whitebark Pine

Whitebark pine is a high-elevation, important tree species that provides critical habitat for wildlife and supplies valued ecosystem services. These trees currently face multiple threats, including attack by the mountain pine beetle, which has recently killed whitebark pines over much of the western U.S. Climate is an important factor in these outbreaks, and future warming is expected to affect ep
link

Quantifying the Effects of Climate Change on Mountain Pine Beetle Outbreaks and Subsequent Threats to Whitebark Pine

Whitebark pine is a high-elevation, important tree species that provides critical habitat for wildlife and supplies valued ecosystem services. These trees currently face multiple threats, including attack by the mountain pine beetle, which has recently killed whitebark pines over much of the western U.S. Climate is an important factor in these outbreaks, and future warming is expected to affect ep
Learn More

Sagebrush Ecosystems in a Changing Climate

Climate responses of sagebrush are needed to inform land managers of the stability and restoration of sagebrush ecosystems, which are an important but threatened habitat type. We evaluated climate responses of sagebrush using two approaches: (1) experimental manipulations of temperature and precipitation for natural plants in the field, and (2) assessment of how climate adaptation and weather have
link

Sagebrush Ecosystems in a Changing Climate

Climate responses of sagebrush are needed to inform land managers of the stability and restoration of sagebrush ecosystems, which are an important but threatened habitat type. We evaluated climate responses of sagebrush using two approaches: (1) experimental manipulations of temperature and precipitation for natural plants in the field, and (2) assessment of how climate adaptation and weather have
Learn More

Science to Examine the Interactions Between Climate, Agriculture, and Water Quality

The purpose of the project was to conduct an extensive search for completed and ongoing research that deals with climate change and agriculture in the context of water quality, for the Eastern Tallgrass Prairie and Big Rivers Landscape Conservation Cooperative (LCC) and the Upper Midwest and Great Lakes LCC. The search to acquire this information was two-fold. One portion of the search dealt wit
link

Science to Examine the Interactions Between Climate, Agriculture, and Water Quality

The purpose of the project was to conduct an extensive search for completed and ongoing research that deals with climate change and agriculture in the context of water quality, for the Eastern Tallgrass Prairie and Big Rivers Landscape Conservation Cooperative (LCC) and the Upper Midwest and Great Lakes LCC. The search to acquire this information was two-fold. One portion of the search dealt wit
Learn More

Terrestrial Connectivity Across the South Central United States: Implications for the Sustainability of Wildlife Populations and Communities

Habitat fragmentation, modification, and loss have been implicated in the decline of many species, including more than 85% of those considered threatened or endangered. Therefore, connectivity, or the ability of organisms to move among habitat patches, is a critical component of landscape health. In addition to influencing the sustainability of wildlife populations and communities, connectivity al
link

Terrestrial Connectivity Across the South Central United States: Implications for the Sustainability of Wildlife Populations and Communities

Habitat fragmentation, modification, and loss have been implicated in the decline of many species, including more than 85% of those considered threatened or endangered. Therefore, connectivity, or the ability of organisms to move among habitat patches, is a critical component of landscape health. In addition to influencing the sustainability of wildlife populations and communities, connectivity al
Learn More

The Vulnerability of Forests to Climate Change and Wildfire in the Southwestern U.S.

Fire in the western U.S. poses one of the greatest threats to human and ecological communities alike. In fact, fire management is the largest single expenditure of land management funds on federal lands. Now, climate change is altering wildfire patterns. Climate change in the West is creating warmer and drier conditions, resulting in an increase in the amount of dead vegetation available to fuel f
link

The Vulnerability of Forests to Climate Change and Wildfire in the Southwestern U.S.

Fire in the western U.S. poses one of the greatest threats to human and ecological communities alike. In fact, fire management is the largest single expenditure of land management funds on federal lands. Now, climate change is altering wildfire patterns. Climate change in the West is creating warmer and drier conditions, resulting in an increase in the amount of dead vegetation available to fuel f
Learn More

Understanding Habitat Connectivity to Inform Conservation Decisions

In the Southeast, where rapid human development is increasingly dividing natural areas, habitat fragmentation and loss threaten the health and even genetic viability of wildlife populations, and interrupt migration routes. Climate change is projected to exacerbate fragmentation by further disrupting landscapes. To make matters worse, it is also expected to shift the range of many species, forcing
link

Understanding Habitat Connectivity to Inform Conservation Decisions

In the Southeast, where rapid human development is increasingly dividing natural areas, habitat fragmentation and loss threaten the health and even genetic viability of wildlife populations, and interrupt migration routes. Climate change is projected to exacerbate fragmentation by further disrupting landscapes. To make matters worse, it is also expected to shift the range of many species, forcing
Learn More

Assessing Links between Glaciers and the Northern Pacific Coastal Temperate Rainforest Ecosystem

Rates of glacier loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth. These changes in glacier volume and extent will affect the flow and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska (GOA). Runoff from glaciers accounts for about half of the land-to-ocean movement of freshwater into the GOA, strongly influ
link

Assessing Links between Glaciers and the Northern Pacific Coastal Temperate Rainforest Ecosystem

Rates of glacier loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth. These changes in glacier volume and extent will affect the flow and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska (GOA). Runoff from glaciers accounts for about half of the land-to-ocean movement of freshwater into the GOA, strongly influ
Learn More

Contribution of Landscape Characteristics and Vegetation Shifts from Global Climate Change to Long-Term Viability of Greater Sage-grouse

Greater sage-grouse (Centrocercus urophasianus) is a candidate for listing under the Endangered Species Act because of population and habitat fragmentation combined with inadequate regulatory mechanisms to control development in critical areas. In addition to the current threats to habitat, each 1 degree celsius increase in temperature due to climate change is expected to result in an additional 8
link

Contribution of Landscape Characteristics and Vegetation Shifts from Global Climate Change to Long-Term Viability of Greater Sage-grouse

Greater sage-grouse (Centrocercus urophasianus) is a candidate for listing under the Endangered Species Act because of population and habitat fragmentation combined with inadequate regulatory mechanisms to control development in critical areas. In addition to the current threats to habitat, each 1 degree celsius increase in temperature due to climate change is expected to result in an additional 8
Learn More

SERAP: Modeling of Global and Land Use Change Impacts

The Southeastern United States spans a broad range of physiographic settings and maintains exceptionally high levels of faunal diversity. Unfortunately, many of these ecosystems are increasingly under threat due to rapid human development, and management agencies are increasingly aware of the potential effects that climate change will have on these ecosystems. Natural resource managers and conserv
link

SERAP: Modeling of Global and Land Use Change Impacts

The Southeastern United States spans a broad range of physiographic settings and maintains exceptionally high levels of faunal diversity. Unfortunately, many of these ecosystems are increasingly under threat due to rapid human development, and management agencies are increasingly aware of the potential effects that climate change will have on these ecosystems. Natural resource managers and conserv
Learn More

SERAP: Decision Support for Stakeholders and Managers

The USGS and South Atlantic LCC worked with stakeholders and managers across the Southeast to identify and assess landscape-level strategies for conserving multiple species. These strategies incorporated predictions from downscaled climate models, sea level rise, and changes to aquatic and terrestrial habitats.
link

SERAP: Decision Support for Stakeholders and Managers

The USGS and South Atlantic LCC worked with stakeholders and managers across the Southeast to identify and assess landscape-level strategies for conserving multiple species. These strategies incorporated predictions from downscaled climate models, sea level rise, and changes to aquatic and terrestrial habitats.
Learn More