Skip to main content
U.S. flag

An official website of the United States government

Plants

Climate change is impacting soil and vegetation management practices, ecosystem function, human health, cultural resiliency, and economic well-being. CASC-funded projects inform vegetation and ecosystem restoration and shifting land management practices to help conserve important native plant species. Explore our science with plants below.

Filter Total Items: 180

Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S.

Determining which species, habitats, or ecosystems are most vulnerable to climate change enables resource managers to better set priorities for conservation action. To address the need for information on vulnerability, this research project aimed to leverage the expertise of university partners to inform the North Central Climate Science Center on how to best assess the vulnerability of elements o
link

Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S.

Determining which species, habitats, or ecosystems are most vulnerable to climate change enables resource managers to better set priorities for conservation action. To address the need for information on vulnerability, this research project aimed to leverage the expertise of university partners to inform the North Central Climate Science Center on how to best assess the vulnerability of elements o
Learn More

Assessing Viability of the Haleakalā Silversword to Uncover the Effects of Climate Change on Hawaiˈi’s High-Elevation Ecosystems

Maui’s threatened Haleakalā silversword forms the foundation of a diverse high-elevation community on Haleakalā, and is an ideal species for assessing how this ecosystem is responding to climate change. The silversword’s striking appearance makes it one of Hawaiʻi’s most recognizable species, and it is one of the main attractions drawing 1-2 million tourists to Haleakalā National Park each year. T
link

Assessing Viability of the Haleakalā Silversword to Uncover the Effects of Climate Change on Hawaiˈi’s High-Elevation Ecosystems

Maui’s threatened Haleakalā silversword forms the foundation of a diverse high-elevation community on Haleakalā, and is an ideal species for assessing how this ecosystem is responding to climate change. The silversword’s striking appearance makes it one of Hawaiʻi’s most recognizable species, and it is one of the main attractions drawing 1-2 million tourists to Haleakalā National Park each year. T
Learn More

Modeling Climate-Driven Changes to Vegetation in the Hawaiian Islands

Hawaiʻi is home to a rich diversity of native plants, about 90 percent of which are found nowhere else in the world. However, changing climate conditions may reduce the amount of suitable habitat for native plants and contribute to the spread of invasive plant species. The goal of this project was to better understand how Hawaiian native and invasive plants will respond to climate change. Scientis
link

Modeling Climate-Driven Changes to Vegetation in the Hawaiian Islands

Hawaiʻi is home to a rich diversity of native plants, about 90 percent of which are found nowhere else in the world. However, changing climate conditions may reduce the amount of suitable habitat for native plants and contribute to the spread of invasive plant species. The goal of this project was to better understand how Hawaiian native and invasive plants will respond to climate change. Scientis
Learn More

Projecting Future Climate Effects on Cottonwood and Willow Seed Dispersal and Tree Regeneration in Western Riparian Forests

Throughout western North America, warming associated with climate change is leading to both earlier spring peak streamflows and earlier seed dispersal, potentially reducing seedling establishment and in turn reducing the quality of riparian (near-river) forests, which provide critical habitat for diverse birds, mammals, reptiles, amphibians, and insects, and food and shade for fish and other aquat
link

Projecting Future Climate Effects on Cottonwood and Willow Seed Dispersal and Tree Regeneration in Western Riparian Forests

Throughout western North America, warming associated with climate change is leading to both earlier spring peak streamflows and earlier seed dispersal, potentially reducing seedling establishment and in turn reducing the quality of riparian (near-river) forests, which provide critical habitat for diverse birds, mammals, reptiles, amphibians, and insects, and food and shade for fish and other aquat
Learn More

Quantifying the Effects of Climate Change on Mountain Pine Beetle Outbreaks and Subsequent Threats to Whitebark Pine

Whitebark pine is a high-elevation, important tree species that provides critical habitat for wildlife and supplies valued ecosystem services. These trees currently face multiple threats, including attack by the mountain pine beetle, which has recently killed whitebark pines over much of the western U.S. Climate is an important factor in these outbreaks, and future warming is expected to affect ep
link

Quantifying the Effects of Climate Change on Mountain Pine Beetle Outbreaks and Subsequent Threats to Whitebark Pine

Whitebark pine is a high-elevation, important tree species that provides critical habitat for wildlife and supplies valued ecosystem services. These trees currently face multiple threats, including attack by the mountain pine beetle, which has recently killed whitebark pines over much of the western U.S. Climate is an important factor in these outbreaks, and future warming is expected to affect ep
Learn More

The Vulnerability of Forests to Climate Change and Wildfire in the Southwestern U.S.

Fire in the western U.S. poses one of the greatest threats to human and ecological communities alike. In fact, fire management is the largest single expenditure of land management funds on federal lands. Now, climate change is altering wildfire patterns. Climate change in the West is creating warmer and drier conditions, resulting in an increase in the amount of dead vegetation available to fuel f
link

The Vulnerability of Forests to Climate Change and Wildfire in the Southwestern U.S.

Fire in the western U.S. poses one of the greatest threats to human and ecological communities alike. In fact, fire management is the largest single expenditure of land management funds on federal lands. Now, climate change is altering wildfire patterns. Climate change in the West is creating warmer and drier conditions, resulting in an increase in the amount of dead vegetation available to fuel f
Learn More

Understanding Climate Change Vulnerability in the Pacific Northwest: A Comparison of Three Approaches

Climate change is already affecting species in many ways. Because individual species respond to climate change differently, some will be adversely affected by climate change whereas others may benefit. Successfully managing species in a changing climate will require an understanding of which species will be most and least impacted by climate change. Although several approaches have been proposed f
link

Understanding Climate Change Vulnerability in the Pacific Northwest: A Comparison of Three Approaches

Climate change is already affecting species in many ways. Because individual species respond to climate change differently, some will be adversely affected by climate change whereas others may benefit. Successfully managing species in a changing climate will require an understanding of which species will be most and least impacted by climate change. Although several approaches have been proposed f
Learn More

Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin

Cheatgrass began invading the Great Basin about 100 years ago, changing large parts of the landscape from a rich, diverse ecosystem to one where a single invasive species dominates. Cheatgrass dominated areas experience more fires that burn more land than in native ecosystems, resulting in economic and resource losses. Therefore, the reduced production, or absence, of cheatgrass in previously inva
link

Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin

Cheatgrass began invading the Great Basin about 100 years ago, changing large parts of the landscape from a rich, diverse ecosystem to one where a single invasive species dominates. Cheatgrass dominated areas experience more fires that burn more land than in native ecosystems, resulting in economic and resource losses. Therefore, the reduced production, or absence, of cheatgrass in previously inva
Learn More

Understanding How Warming Temperatures Will Impact Trees and Insects Using Cities as a Proxy

Climate in the southeastern U.S. is predicted to be changing at a slower rate than other parts of North America; however, land use change associated with urbanization is having a significant effect on wildlife populations and habitat availability. We sought to understand the effect of global warming on both beneficial and pest insects of trees. We used urban warming as a proxy for global warming i
link

Understanding How Warming Temperatures Will Impact Trees and Insects Using Cities as a Proxy

Climate in the southeastern U.S. is predicted to be changing at a slower rate than other parts of North America; however, land use change associated with urbanization is having a significant effect on wildlife populations and habitat availability. We sought to understand the effect of global warming on both beneficial and pest insects of trees. We used urban warming as a proxy for global warming i
Learn More

How will Florida’s Biodiversity Respond to Climate Change?

Florida is home to 50 endangered species, 23 National Wildlife Refuges, 9 national parks, and 119 state parks. Straddling both temperate and sub-tropical zones, the state is also unique in that it is a long and narrow peninsula, surrounded on three sides by warm water, creating a dynamic environment. The impacts of climate change, such as sea-level rise and severe storms, threaten the state’s uniq
link

How will Florida’s Biodiversity Respond to Climate Change?

Florida is home to 50 endangered species, 23 National Wildlife Refuges, 9 national parks, and 119 state parks. Straddling both temperate and sub-tropical zones, the state is also unique in that it is a long and narrow peninsula, surrounded on three sides by warm water, creating a dynamic environment. The impacts of climate change, such as sea-level rise and severe storms, threaten the state’s uniq
Learn More

Impacts of Climate-Driven Changes in Spring Green-Up on Migratory Birds in Alaska

Migratory birds are important for recreation and tourism, contributing to a vibrant birdwatching industry in Alaska. Every spring, hundreds of birds migrate to their summer breeding grounds in Alaska and northern Canada. Their arrival is timed with the height of the spring green-up of plants, which provide the food necessary for birds to reproduce and raise their young. However, over the last fift
link

Impacts of Climate-Driven Changes in Spring Green-Up on Migratory Birds in Alaska

Migratory birds are important for recreation and tourism, contributing to a vibrant birdwatching industry in Alaska. Every spring, hundreds of birds migrate to their summer breeding grounds in Alaska and northern Canada. Their arrival is timed with the height of the spring green-up of plants, which provide the food necessary for birds to reproduce and raise their young. However, over the last fift
Learn More

Quantifying Vulnerability of Quaking Aspen Woodlands and Associated Bird Communities to Global Climate Change in the Northern Great Basin

Quaking aspen populations are declining in much of the West due to altered fire regimes, competition with conifers, herbivory, drought, disease, and insect outbreaks. Aspen stands typically support higher bird biodiversity and abundance than surrounding habitat types, and maintaining current distribution and abundance of several bird species in the northern Great Basin is likely tied to the persis
link

Quantifying Vulnerability of Quaking Aspen Woodlands and Associated Bird Communities to Global Climate Change in the Northern Great Basin

Quaking aspen populations are declining in much of the West due to altered fire regimes, competition with conifers, herbivory, drought, disease, and insect outbreaks. Aspen stands typically support higher bird biodiversity and abundance than surrounding habitat types, and maintaining current distribution and abundance of several bird species in the northern Great Basin is likely tied to the persis
Learn More