Skip to main content
U.S. flag

An official website of the United States government

Southeast

The Southeast Climate Adaptation Science Center (SE CASC) works with regional partners in the Southeast U.S. to identify global change-related information needed by natural and cultural resource managers on topics including invasive species, coastal adaptation, climate sensitive landscapes, water resource scenarios, and urbanization patterns and effects.

Filter Total Items: 104

A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models

Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily ac
link

A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models

Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily ac
Learn More

Assessing Climate-Sensitive Ecosystems in the Southeastern U.S.

The southeastern U.S. contains a unique diversity of ecosystems that provide important benefits, including habitat for rare wildlife and plants, improved water quality, and recreation opportunities. Understanding how climate change will affect these ecosystems is vital for knowing how best to protect them and the services they supply. The goal of this project was to assess the climate change vulne
link

Assessing Climate-Sensitive Ecosystems in the Southeastern U.S.

The southeastern U.S. contains a unique diversity of ecosystems that provide important benefits, including habitat for rare wildlife and plants, improved water quality, and recreation opportunities. Understanding how climate change will affect these ecosystems is vital for knowing how best to protect them and the services they supply. The goal of this project was to assess the climate change vulne
Learn More

Development of the Global Change Monitoring Portal: A Tool for Providing Resource Managers with Global Change Monitoring Data Across the Southeast

Detecting change in ecosystems requires observations of living and non-living components over time. Many different organizations make observations that are relevant to understanding global change processes, but the data are often not easily discoverable by other interested scientists and managers. This project aimed to pull into a centralized location information about many of these observational
link

Development of the Global Change Monitoring Portal: A Tool for Providing Resource Managers with Global Change Monitoring Data Across the Southeast

Detecting change in ecosystems requires observations of living and non-living components over time. Many different organizations make observations that are relevant to understanding global change processes, but the data are often not easily discoverable by other interested scientists and managers. This project aimed to pull into a centralized location information about many of these observational
Learn More

Ecological Implications of Mangrove Forest Migration in the Southeastern U.S.

Coastal wetlands purify water, protect coastal communities from storms, sequester (store) carbon, and provide habitat for fish and wildlife. They are also vulnerable to climate change. In particular, changes in winter climate (warmer temperatures and fewer freeze events) may transform coastal wetlands in the northern Gulf of Mexico, as mangrove forests are expected to expand their range and replac
link

Ecological Implications of Mangrove Forest Migration in the Southeastern U.S.

Coastal wetlands purify water, protect coastal communities from storms, sequester (store) carbon, and provide habitat for fish and wildlife. They are also vulnerable to climate change. In particular, changes in winter climate (warmer temperatures and fewer freeze events) may transform coastal wetlands in the northern Gulf of Mexico, as mangrove forests are expected to expand their range and replac
Learn More

Evaluating Downscaled Climate Models for Projecting Future Changes in the Southeast

Climate change is likely to have many effects on natural ecosystems in the Southeast U.S. While there is information available to conservation managers and ecologists from the global climate models (GCMs), this information is at too coarse a resolution for use in vulnerability assessments and decision making. To better assess how climate change could affect multiple sectors, including ecosystems,
link

Evaluating Downscaled Climate Models for Projecting Future Changes in the Southeast

Climate change is likely to have many effects on natural ecosystems in the Southeast U.S. While there is information available to conservation managers and ecologists from the global climate models (GCMs), this information is at too coarse a resolution for use in vulnerability assessments and decision making. To better assess how climate change could affect multiple sectors, including ecosystems,
Learn More

Evaluating the Use of Models for Projecting Future Water Flow in the Southeast

Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in
link

Evaluating the Use of Models for Projecting Future Water Flow in the Southeast

Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in
Learn More

Turning Uncertainty into Useful Information for Conservation Decisions

We routinely encounter uncertainty when we make decisions – from picking a new morning coffee to choosing where to live. Even decisions that are supported by science contain some level of remaining uncertainty. In the context of conservation and wildlife management, the potential for uncertainty to influence decisions is perhaps most obvious when we think about predicting how actions (or non-actio
link

Turning Uncertainty into Useful Information for Conservation Decisions

We routinely encounter uncertainty when we make decisions – from picking a new morning coffee to choosing where to live. Even decisions that are supported by science contain some level of remaining uncertainty. In the context of conservation and wildlife management, the potential for uncertainty to influence decisions is perhaps most obvious when we think about predicting how actions (or non-actio
Learn More

Understanding Habitat Connectivity to Inform Conservation Decisions

In the Southeast, where rapid human development is increasingly dividing natural areas, habitat fragmentation and loss threaten the health and even genetic viability of wildlife populations, and interrupt migration routes. Climate change is projected to exacerbate fragmentation by further disrupting landscapes. To make matters worse, it is also expected to shift the range of many species, forcing
link

Understanding Habitat Connectivity to Inform Conservation Decisions

In the Southeast, where rapid human development is increasingly dividing natural areas, habitat fragmentation and loss threaten the health and even genetic viability of wildlife populations, and interrupt migration routes. Climate change is projected to exacerbate fragmentation by further disrupting landscapes. To make matters worse, it is also expected to shift the range of many species, forcing
Learn More

Impact of Ocean Warming and Acidification on Growth of Reef-Building Corals

Coral reefs are some of the most biologically rich and economically valuable ecosystems in the world. They provide food, fishing, and recreation opportunities for millions of people, protect coastlines from storms, and shelter thousands of plant and animal species. However, climate change is contributing to the degradation of coral reefs in two significant ways: warming temperature and increasing
link

Impact of Ocean Warming and Acidification on Growth of Reef-Building Corals

Coral reefs are some of the most biologically rich and economically valuable ecosystems in the world. They provide food, fishing, and recreation opportunities for millions of people, protect coastlines from storms, and shelter thousands of plant and animal species. However, climate change is contributing to the degradation of coral reefs in two significant ways: warming temperature and increasing
Learn More

SERAP: Assessment of Climate and Land Use Change Impacts on Terrestrial Species

Researchers from North Carolina State University and the USGS integrated models of urbanization and vegetation dynamics with the regional climate models to predict vegetation dynamics and assess how landscape change could impact priority species, including North American land birds. This integrated ensemble of models can be used to predict locations where responses to climate change are most lik
link

SERAP: Assessment of Climate and Land Use Change Impacts on Terrestrial Species

Researchers from North Carolina State University and the USGS integrated models of urbanization and vegetation dynamics with the regional climate models to predict vegetation dynamics and assess how landscape change could impact priority species, including North American land birds. This integrated ensemble of models can be used to predict locations where responses to climate change are most lik
Learn More

SERAP: Assessment of Shoreline Retreat in Response to Sea Level Rise

The broad range of complex factors influencing coastal systems contribute to large uncertainties in predicting long-term sea level rise impacts. Researchers demonstrated the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments for predicting uncertainty. A BN was used to define relationships between driving f
link

SERAP: Assessment of Shoreline Retreat in Response to Sea Level Rise

The broad range of complex factors influencing coastal systems contribute to large uncertainties in predicting long-term sea level rise impacts. Researchers demonstrated the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments for predicting uncertainty. A BN was used to define relationships between driving f
Learn More

SERAP: Comprehensive Web-based Climate Change Projections: Downscaled Maps and Data

A team of USGS and academic researchers developed a comprehensive web-based dataset of high-resolution (or ‘downscaled’) climate change projections, enabling scientists and decision-makers to better assess climate related ecosystem impacts. The research team implemented a three-part plan to provide high resolution climate data for the impact modeling community. First, a database was developed of u
link

SERAP: Comprehensive Web-based Climate Change Projections: Downscaled Maps and Data

A team of USGS and academic researchers developed a comprehensive web-based dataset of high-resolution (or ‘downscaled’) climate change projections, enabling scientists and decision-makers to better assess climate related ecosystem impacts. The research team implemented a three-part plan to provide high resolution climate data for the impact modeling community. First, a database was developed of u
Learn More