Lessons from the Past, Roadmap for the Future
The present-day climate of the Earth is influenced by a combination of natural climate variability, increased concentrations of greenhouse gases in the atmosphere since the Industrial Revolution, and changes in land cover (such as conversion from forest to agriculture and back again).
Paleoclimate Archives
Paleoclimate Proxies
To understand the potential range and effect of future climate and how its changes may affect marine and terrestrial systems and society, scientists rely on instrumental records that are at most a few hundred years long and longer geologic records that extend back over thousands and millions of years. The reconstructed records of paleoclimate provide important insights into potential rates and magnitudes of change, warm and cold extremes that lasted for 1000s of years, and large changes in sea level.
Combining paleoclimate data with climate modeling experiments provides a powerful method for discovering and understanding the processes and feedbacks that underlie gradual and abrupt climate change and is an essential component of testing and improving climate models that are used to project possible future climates. Paleoclimate data show how past ecosystems responded to a range of climate and environmental changes and provide an overview of their resilience. The resulting understanding of how natural systems respond to climate forcing can help guide policy makers and managers as they make plans to adapt to climate change.
What is paleoclimatology?
Paleoclimatology is the study of Earth's climate during the entire history of the Earth. Paleoclimate research uses geologic and biologic evidence (climate proxies) preserved in sediments, rocks, tree rings, corals, ice sheets and other climate archives to reconstruct past climate in terrestrial and aquatic environments around the world. Paleoclimate reconstructions provide evidence for the baseline level of climate and environmental variability before humans began using instruments to measure different aspects of climate and weather.
How far back in Earth's history can paleoclimate be reconstructed?
Paleoclimate research spans the history of the Earth. Studies that focus on the last few centuries to millennia produce high-resolution temporal reconstructions of temperature and precipitation that establish a basis for quantifying and understanding natural climate variability. Studies that focus on the past tens-of-thousands to millions of years reveal climate change and variability associated with Earth-Sun geometry and variations in greenhouse gases that controlled the waxing and waning of ice ages, abrupt changes associated with changes in ocean circulation, and geologic processes such as mountain uplift. "Deep-time" paleoclimate studies (prior to ~2.6 million years ago) provide a means to understand extreme climate states and long-term patterns of atmospheric carbon dioxide and climate.
How is past climate reconstructed?
Past climates are reconstructed from a variety of geologic and biologic archives that preserve climate proxies, or evidence of past climate and environment. Examples of archives include terrestrial or aquatic sediments, ice cores from glaciers and ice sheets, tree rings, corals, and packrat middens. These archives contain climate proxies, which are physical, chemical, or biological features that provide information on past climate and environment (such as sea level, air and ocean temperature, atmospheric composition, and precipitation).
How do we know the time period represented by a paleoclimate record?
A variety of analytical techniques are used to determine the ages of the archives and proxies. Typically, dating is used to establish the time of onset, termination, and rate of change of climate events. Many of the dating techniques employed are based on analyzing the nature of radioactive isotopes (e.g., radiocarbon, uranium-thorium) present in sample material. These dating techniques are used in conjunction with other methods such as biostratigraphy (which uses the fossil assemblages contained within a sample to estimate its age) and counting tree rings or annual sediment layers deposited ice and lakes. Other techniques such as surface exposure dating methods are used to estimate the amount of time a sample material such as a boulder deposited by an ice sheet or shoreline has been exposed on the Earth's surface to cosmic rays. Whenever possible, scientists utilize more than one dating method in order to maximize the accuracy and precision of their findings.
How can paleoclimate studies help us better understand potential consequences of future climate change?
Every component of the Earth system affects or is affected by climate. Ecosystems, water availability, carbon cycling, sea level rise, ocean circulation, and ocean acidification all interact with the climate system and respond to changes in climate. Paleoclimate studies provide an essential perspective for assessing the potential impacts of future climate on natural systems and the people who rely on them.
How is paleoclimate research useful for policy and resource managers?
Understanding the response of natural systems to climate forcing can help guide policy makers and managers as they prepare adaptation and mitigation plans for climate change. For example, knowing how past changes in the frequency and amplitude of climate phenomena such as El Niño affected ecosystems provides a framework for exploring policy and management alternatives to mitigate or adapt to future changes. Paleoclimate research that documented the natural range of variability in dissolved oxygen levels was integrated with other evidence to develop dissolved oxygen targets for Chesapeake Bay, and it increasingly is being integrated into management efforts in other critical habitats around the world.
Arctic Biogeochemical Response to Permafrost Thaw (ABRUPT)
Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models
Quaternary Hydroclimate Records of Spring Ecosystems
Past Perspectives of Water in the West
Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts
Drivers and Impacts of North Pacific Climate Variability
Wetlands in the Quaternary
Pacific Ocean Patterns, Processes, and Productivity (POP3): Impacts of ancient warming on marine ecosystems and western North America
Sea Level and Storm Hazards: Past and Present
Reconstructing Ocean Circulation & Hydroclimate in the Subtropical Atlantic
Natural Drought and Flood Histories from Lacustrine Archives
Geological Investigations of the Neogene
Data Release for "Holocene thermokarst lake dynamics in northern Interior Alaska: the interplay of climate, fire, and subsurface hydrology"
A network of 31 Upper Missouri River Basin naturalized water-year (Oct-Sep) streamflow reconstructions spanning years 800 - 1998 CE
Community sourced mid-Piacenzian sea surface temperature (SST) data
Paleohydrologic reconstructions of water-year streamflow for 31 stream gaging sites in the Missouri River Basin with complete data for 1685 through 1977
Data release for Applying the Community Ice Sheet Model to evaluate PMIP3 LGM climatologies over the North American ice sheets
Data release for Lake levels in a discontinuous permafrost landscape: Late Holocene variations inferred from sediment oxygen isotopes, Yukon Flats, Alaska
PRISM late Pliocene (Piacenzian) alkenone - derived SST data
Coral cores collected in Dry Tortugas National Park, Florida, U.S.A.: Photographs and X-rays
Distribution of Late Quaternary wind-deposited sand in eastern Colorado
Map of glacial limits and possible refugia in the southern Alexander Archipelago, Alaska, during the late Wisconsin glaciation
MIS 5e sea-level history along the Pacific coast of North America
Environmental evolution of peat in the Sacramento – San Joaquin Delta (California) during the Middle and Late Holocene as deduced from pollen, diatoms and magnetism
Understanding rates of change: A case study using fossil pollen records from California to assess the potential for and challenges to a regional data synthesis
An 11,300 yr record of paleoclimatology and paleoceanography of the central California coast in a gravity core from Pioneer Seamount
Were humans and mammoths on the Channel Islands at the same time?
PlioMIP: The Pliocene Model Intercomparison Project
Evidence for humans in North America during the Last Glacial Maximum
Alpine glacier reveals ecosystem impacts of Europe's prosperity and peril over the last millennium
A stable isotope record of late Quaternary hydrologic change in the northwestern Brooks Range, Alaska (eastern Beringia)
Shallow marine ecosystem collapse and recovery during the Paleocene-Eocene Thermal Maximum
Microfossils from Calvert Cliffs give us clues to the future warmer climate
The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland
Lessons from the Past, Roadmap for the Future
The present-day climate of the Earth is influenced by a combination of natural climate variability, increased concentrations of greenhouse gases in the atmosphere since the Industrial Revolution, and changes in land cover (such as conversion from forest to agriculture and back again).
Paleoclimate Archives
Paleoclimate Proxies
To understand the potential range and effect of future climate and how its changes may affect marine and terrestrial systems and society, scientists rely on instrumental records that are at most a few hundred years long and longer geologic records that extend back over thousands and millions of years. The reconstructed records of paleoclimate provide important insights into potential rates and magnitudes of change, warm and cold extremes that lasted for 1000s of years, and large changes in sea level.
Combining paleoclimate data with climate modeling experiments provides a powerful method for discovering and understanding the processes and feedbacks that underlie gradual and abrupt climate change and is an essential component of testing and improving climate models that are used to project possible future climates. Paleoclimate data show how past ecosystems responded to a range of climate and environmental changes and provide an overview of their resilience. The resulting understanding of how natural systems respond to climate forcing can help guide policy makers and managers as they make plans to adapt to climate change.
What is paleoclimatology?
Paleoclimatology is the study of Earth's climate during the entire history of the Earth. Paleoclimate research uses geologic and biologic evidence (climate proxies) preserved in sediments, rocks, tree rings, corals, ice sheets and other climate archives to reconstruct past climate in terrestrial and aquatic environments around the world. Paleoclimate reconstructions provide evidence for the baseline level of climate and environmental variability before humans began using instruments to measure different aspects of climate and weather.
How far back in Earth's history can paleoclimate be reconstructed?
Paleoclimate research spans the history of the Earth. Studies that focus on the last few centuries to millennia produce high-resolution temporal reconstructions of temperature and precipitation that establish a basis for quantifying and understanding natural climate variability. Studies that focus on the past tens-of-thousands to millions of years reveal climate change and variability associated with Earth-Sun geometry and variations in greenhouse gases that controlled the waxing and waning of ice ages, abrupt changes associated with changes in ocean circulation, and geologic processes such as mountain uplift. "Deep-time" paleoclimate studies (prior to ~2.6 million years ago) provide a means to understand extreme climate states and long-term patterns of atmospheric carbon dioxide and climate.
How is past climate reconstructed?
Past climates are reconstructed from a variety of geologic and biologic archives that preserve climate proxies, or evidence of past climate and environment. Examples of archives include terrestrial or aquatic sediments, ice cores from glaciers and ice sheets, tree rings, corals, and packrat middens. These archives contain climate proxies, which are physical, chemical, or biological features that provide information on past climate and environment (such as sea level, air and ocean temperature, atmospheric composition, and precipitation).
How do we know the time period represented by a paleoclimate record?
A variety of analytical techniques are used to determine the ages of the archives and proxies. Typically, dating is used to establish the time of onset, termination, and rate of change of climate events. Many of the dating techniques employed are based on analyzing the nature of radioactive isotopes (e.g., radiocarbon, uranium-thorium) present in sample material. These dating techniques are used in conjunction with other methods such as biostratigraphy (which uses the fossil assemblages contained within a sample to estimate its age) and counting tree rings or annual sediment layers deposited ice and lakes. Other techniques such as surface exposure dating methods are used to estimate the amount of time a sample material such as a boulder deposited by an ice sheet or shoreline has been exposed on the Earth's surface to cosmic rays. Whenever possible, scientists utilize more than one dating method in order to maximize the accuracy and precision of their findings.
How can paleoclimate studies help us better understand potential consequences of future climate change?
Every component of the Earth system affects or is affected by climate. Ecosystems, water availability, carbon cycling, sea level rise, ocean circulation, and ocean acidification all interact with the climate system and respond to changes in climate. Paleoclimate studies provide an essential perspective for assessing the potential impacts of future climate on natural systems and the people who rely on them.
How is paleoclimate research useful for policy and resource managers?
Understanding the response of natural systems to climate forcing can help guide policy makers and managers as they prepare adaptation and mitigation plans for climate change. For example, knowing how past changes in the frequency and amplitude of climate phenomena such as El Niño affected ecosystems provides a framework for exploring policy and management alternatives to mitigate or adapt to future changes. Paleoclimate research that documented the natural range of variability in dissolved oxygen levels was integrated with other evidence to develop dissolved oxygen targets for Chesapeake Bay, and it increasingly is being integrated into management efforts in other critical habitats around the world.