Skip to main content
U.S. flag

An official website of the United States government

Sea-Level Rise

Filter Total Items: 32

Estuarine and MaRsh Geology Research Project

The goal of the Estuarine and MaRsh Geology (EMRG) Research Project is to study how and where short- and long-term marsh and estuarine coastal processes interact, how they influence coastal accretion or erosion, and how they pre-condition a marsh’s resiliency to storms, sea-level change, and human alterations along the northern Gulf of Mexico (Grand Bay and Point aux Chenes, Mississippi and St...
link

Estuarine and MaRsh Geology Research Project

The goal of the Estuarine and MaRsh Geology (EMRG) Research Project is to study how and where short- and long-term marsh and estuarine coastal processes interact, how they influence coastal accretion or erosion, and how they pre-condition a marsh’s resiliency to storms, sea-level change, and human alterations along the northern Gulf of Mexico (Grand Bay and Point aux Chenes, Mississippi and St...
Learn More

Circulation and Sediment, Nutrient, Contaminant, and Larval Dynamics on Reefs

The overall objective of this research effort is to better understand how circulation and sediment processes impact coral reefs.
link

Circulation and Sediment, Nutrient, Contaminant, and Larval Dynamics on Reefs

The overall objective of this research effort is to better understand how circulation and sediment processes impact coral reefs.
Learn More

Sea-Level Rise Hazards and Decision Support

The Sea-Level Rise Hazards and Decision-Support project assesses present and future coastal vulnerability to provide actionable information for management of our Nation’s coasts. Through multidisciplinary research and collaborative partnerships with decision-makers, physical, biological, and social factors that describe landscape and habitat changes are incorporated in a probabilistic modeling...
link

Sea-Level Rise Hazards and Decision Support

The Sea-Level Rise Hazards and Decision-Support project assesses present and future coastal vulnerability to provide actionable information for management of our Nation’s coasts. Through multidisciplinary research and collaborative partnerships with decision-makers, physical, biological, and social factors that describe landscape and habitat changes are incorporated in a probabilistic modeling...
Learn More

The Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System

To responsibly manage our coastal resources requires an understanding of the processes responsible for coastal change. The CMHRP developed a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system that allows the user to evaluate how different processes such as winds and waves, combined with sediment transport, interact with coastlines to modify them. Users can change model...
link

The Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System

To responsibly manage our coastal resources requires an understanding of the processes responsible for coastal change. The CMHRP developed a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system that allows the user to evaluate how different processes such as winds and waves, combined with sediment transport, interact with coastlines to modify them. Users can change model...
Learn More

Woods Hole Coastal and Marine Science Center in the Field

In the Field; Land, Sea, and Air Woods Hole Coastal and Marine Science Center scientists and staff study coastal and ocean resources and processes from the land, sea, and air, to shorelines and estuaries to the continental shelf, deep sea, lake floor, river bottoms and shallow subsurfaces environments. We have implemented new safety and fieldwork processes to maintain social distancing to ensure...
link

Woods Hole Coastal and Marine Science Center in the Field

In the Field; Land, Sea, and Air Woods Hole Coastal and Marine Science Center scientists and staff study coastal and ocean resources and processes from the land, sea, and air, to shorelines and estuaries to the continental shelf, deep sea, lake floor, river bottoms and shallow subsurfaces environments. We have implemented new safety and fieldwork processes to maintain social distancing to ensure...
Learn More

Using Video Imagery to Study Coastal Change: Barter Island, Alaska

For a short study period, two video cameras overlooked the coast from atop the coastal bluff of Barter Island in northern Alaska. The purpose was to observe and quantify coastal processes such as wave run-up, development of rip channels, bluff erosion, and movement of sandbars and ice floes.
link

Using Video Imagery to Study Coastal Change: Barter Island, Alaska

For a short study period, two video cameras overlooked the coast from atop the coastal bluff of Barter Island in northern Alaska. The purpose was to observe and quantify coastal processes such as wave run-up, development of rip channels, bluff erosion, and movement of sandbars and ice floes.
Learn More

Sea Level Change

An interactive guide to global and regional sea level rise scenarios for the United States.
link

Sea Level Change

An interactive guide to global and regional sea level rise scenarios for the United States.
Learn More

Estuarine Processes, Hazards, and Ecosystems

Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...
link

Estuarine Processes, Hazards, and Ecosystems

Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...
Learn More

Geologic Mapping of the Massachusetts Seafloor

The U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM) is conducting geologic mapping of the sea floor to characterize the surface and shallow subsurface geologic framework within the Massachusetts coastal zone. The long-term goal of this mapping effort is to produce high-resolution geologic maps and a Geographic Information System (GIS) that will...
link

Geologic Mapping of the Massachusetts Seafloor

The U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM) is conducting geologic mapping of the sea floor to characterize the surface and shallow subsurface geologic framework within the Massachusetts coastal zone. The long-term goal of this mapping effort is to produce high-resolution geologic maps and a Geographic Information System (GIS) that will...
Learn More

Coastal Landscape Response to Sea-Level Rise Assessment for the Northeastern United States

As part of the USGS Sea-Level Rise Hazards and Decision-Support project, this assessment seeks to predict the response to sea-level rise across the coastal landscape under a range of future scenarios by evaluating the likelihood of inundation as well as dynamic coastal change. The research is being conducted in conjunction with resource managers and decision makers from federal and state agencies...
link

Coastal Landscape Response to Sea-Level Rise Assessment for the Northeastern United States

As part of the USGS Sea-Level Rise Hazards and Decision-Support project, this assessment seeks to predict the response to sea-level rise across the coastal landscape under a range of future scenarios by evaluating the likelihood of inundation as well as dynamic coastal change. The research is being conducted in conjunction with resource managers and decision makers from federal and state agencies...
Learn More

Coastal and Estuarine Dynamics Project

Coastal and Estuarine Dynamics Project exists to support ocean, coastal and estuarine research. The staff have a broad set of skills; from instrument design and development to all forms of work at sea to software development and data management. The team has successfully deployed and recovered more than 1000 data collection platforms for research in the last 30 years.
link

Coastal and Estuarine Dynamics Project

Coastal and Estuarine Dynamics Project exists to support ocean, coastal and estuarine research. The staff have a broad set of skills; from instrument design and development to all forms of work at sea to software development and data management. The team has successfully deployed and recovered more than 1000 data collection platforms for research in the last 30 years.
Learn More

Hurricane Sandy Response- Linking the Delmarva Peninsula's Geologic Framework to Coastal Vulnerability

The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. In order to better constrain controls on coastal vulnerability and evolution, the region’s sediment sources, transport pathways and sediment sinks must be identified. This project defines the geologic framework of the Delmarva coastal system through...
link

Hurricane Sandy Response- Linking the Delmarva Peninsula's Geologic Framework to Coastal Vulnerability

The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. In order to better constrain controls on coastal vulnerability and evolution, the region’s sediment sources, transport pathways and sediment sinks must be identified. This project defines the geologic framework of the Delmarva coastal system through...
Learn More