Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2573

Airborne lidar and electro-optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, Southern California

Surface rupture from the 2019 Ridgecrest earthquake sequence, initially associated with the M 6.4 foreshock, occurred on July 4 on a ~17 km long, northeast-southwest oriented, left-lateral zone of faulting. Following the M 7.1 mainshock on July 5 (local time), extensive northwest-southeast-oriented, right-lateral faulting was then also mapped along a ~50 km long zone of faults, including sub-paral
Authors
Kenneth W. Hudnut, Benjamin A. Brooks, Katherine M. Scharer, Janis L. Hernandez, Timothy E. Dawson, Michael E. Oskin, J. Ramon Arrowsmith, Christine A. Goulet, Kelly Blake, Matthew A. Boggie, Stephan Bork, Craig L. Glennie, J.C. Fernandez-Diaz, Abhinav Singhania, Darren Hauser, Sven Sorhus

Hydrologically induced deformation in Long Valley Caldera and adjacent Sierra Nevada

Vertical and horizontal components of GNSS displacements in the Long Valley Caldera and adjacent Sierra Nevada range show a clear correlation with hydrological trends at both multiyear and seasonal time scales. We observe a clear vertical and horizontal seasonal deformation pattern primarily attributable to the solid earth response to hydrological surface loading at large-to-regional (Sierra Nevad
Authors
Francesca Silverii, Emily Montgomery-Brown, Adrian Borsa, Andrew Barbour

Science plan for improving three-dimensional seismic velocity models in the San Francisco Bay region, 2019–24

This five-year science plan outlines short-term and long-term goals for improving three-dimensional seismic velocity models in the greater San Francisco Bay region as well as how to foster a community effort in reaching those goals. The short-term goals focus on improving the current U.S. Geological Survey San Francisco Bay region geologic and seismic velocity model using existing data. The long-t
Authors
Brad T. Aagaard, Russell W. Graymer, Clifford H. Thurber, Arthur J. Rodgers, Taka'aki Taira, Rufus D. Catchings, Christine A. Goulet, Andreas Plesch

Methods for rapidly estimating velocity precision from GNSS time series in the presence of temporal correlation: A new method and comparison of existing methods

Time series of position estimates from Global Navigational Satellite System (GNSS) are used to measure the velocities of points on the surface of the Earth. Along with the velocity estimates, a measure of the precision is needed to assess the quality of the velocity measurement. Here, I evaluate rate uncertainties provided by four different methods that have been applied to geodetic time series. T
Authors
John Langbein

Practical limitations of Earthquake Early Warning

Earthquake Early Earning (EEW) entails detection of initial earthquake shaking and rapid estimation and notification to users prior to imminent, stronger shaking. EEW is coming to the U.S. West Coast. But what are the technical and social challenges to delivering actionable information on earthquake shaking before it arrives? Although there will be tangible benefits, there are also limitations. Ba
Authors
David J. Wald

Earthquake early warning ShakeAlert 2.0: Public rollout

The ShakeAlert Earthquake Early Warning System is designed to automatically identify and characterize the initiation and rupture evolution of large earthquakes, estimate the intensity of ground shaking that will result, and deliver alerts to people and systems that may experience shaking, prior to the occurrence of shaking at their location. It is configured to issue alerts to locations within the
Authors
Monica Kohler, Deborah E. Smith, Jennifer Andrews, Angela I. Chung, Renate Hartog, Ivan Henson, Doug Given, Robert Michael deGroot, Stephen Robert Guiwits

Ground-motion predictions for California — Comparisons of three prediction equations

We systematically evaluate datasets, functional forms, independent parameters of estimation, and resulting ground-motion predictions (as median and aleatory variability) of the Graizer and Kalkan (2015, 2016) (GK15) ground-motion prediction equation (GMPE) with the next generation of attenuation project (NGA-West2) models of Abrahamson and others (2014) (ASK14) and Boore and others (2014) (BSSA14)
Authors
Erol Kalkan, Vladimir Graizer

Probabilistic regional-scale liquefaction triggering modeling using 3D Gaussian processes

Liquefaction is a major cause of coseismic damages, occurring irregularly over hundreds or thousands of square kilometers in large earthquakes. Large variations in the extent and location of liquefaction have been observed in recent earthquakes, motivating the need for prediction methods that consider the spatial heterogeneity of geologic deposits at a regional scale. Contemporary regional-scale l
Authors
Michael Greenfield, Alex R. R. Grant

Regionally Optimized Background Earthquake Rates from ETAS (ROBERE) for probabilistic seismic hazard assessment

We use an epidemic‐type aftershock sequence (ETAS) based approach to develop a regionally optimized background earthquake rates from ETAS (ROBERE) method for probabilistic seismic hazard assessment. ROBERE fits parameters to the full seismicity catalog for a region with maximum‐likelihood estimation, including uncertainty. It then averages the earthquake rates over a suite of catalogs from which f
Authors
Andrea L. Llenos, Andrew J. Michael

Activation of optimally and unfavourably oriented faults in a uniform local stress field during the 2011 Prague, Oklahoma, sequence

The orientations of faults activated relative to the local principal stress directions can provide insights into the role of pore pressure changes in induced earthquake sequences. Here, we examine the 2011 M 5.7 Prague earthquake sequence that was induced by nearby wastewater disposal. We estimate the local principal compressive stress direction near the rupture as inferred from shear wave splitti
Authors
Elizabeth S. Cochran, Robert Skoumal, Devin McPhillips, Z. Ross, Katie M. Keranen

Mechanics of near-field deformation during co- and post-seismic shallow fault slip

Poor knowledge of how faults slip and distribute deformation in the shallow crust hinders efforts to mitigate hazards where faults increasingly intersect with the expanding global population at Earth’s surface. Here we analyze two study sites along the 2014 M 6.0 South Napa, California, earthquake rupture, each dominated by either co- or post-seismic shallow fault slip. We combine mobile laser sca
Authors
Johanna Nevitt, Benjamin A. Brooks, Rufus D. Catchings, Mark Goldman, Todd Ericksen, Craig L. Glennie

Dynamic rupture simulations of the M6.4 and M7.1 July 2019 Ridgecrest, California earthquakes

The largest earthquakes of the 2019 Ridgecrest, California, sequence were a M 6.4 left‐lateral rupture followed 34 hr later by a M 7.1 on a perpendicular right‐lateral fault. We use dynamic rupture modeling to address the questions of why the first earthquake did not propagate through the right‐lateral fault in one larger event, whether stress changes from the M 6.4 were necessary for the M 7.1 to
Authors
Julian C. Lozos, Ruth A. Harris