Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2573

2017 One‐year seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes

We produce a one‐year 2017 seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes that updates the 2016 one‐year forecast; this map is intended to provide information to the public and to facilitate the development of induced seismicity forecasting models, methods, and data. The 2017 hazard model applies the same methodology and input logic tree as t
Authors
Mark D. Petersen, Charles Mueller, Morgan P. Moschetti, Susan M. Hoover, Allison Shumway, Daniel E. McNamara, Robert Williams, Andrea L. Llenos, William L. Ellsworth, Justin L. Rubinstein, Arthur F. McGarr, Kenneth S. Rukstales

Microfossil measures of rapid sea-level rise: Timing of response of two microfossil groups to a sudden tidal-flooding experiment in Cascadia

Comparisons of pre-earthquake and post-earthquake microfossils in tidal sequences are accurate means to measure coastal subsidence during past subduction earthquakes, but the amount of subsidence is uncertain, because the response times of fossil taxa to coseismic relative sea-level (RSL) rise are unknown. We measured the response of diatoms and foraminifera to restoration of a salt marsh in south
Authors
B. P. Horton, Yvonne Milker, T. Dura, Kelin Wang, W.T. Bridgeland, Laura S. Brophy, M. Ewald, Nicole Khan, S.E. Engelhart, Alan R. Nelson, Robert C. Witter

Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors

Most time series of geophysical phenomena have temporally correlated errors. From these measurements, various parameters are estimated. For instance, from geodetic measurements of positions, the rates and changes in rates are often estimated and are used to model tectonic processes. Along with the estimates of the size of the parameters, the error in these parameters needs to be assessed. If tempo
Authors
John O. Langbein

The effects of varying injection rates in Osage County, Oklahoma, on the 2016 Mw5.8 Pawnee earthquake

The 2016 Mw 5.8 Pawnee earthquake occurred in a region with active wastewater injection into a basal formation group. Prior to the earthquake, fluid injection rates at most wells were relatively steady, but newly collected data show significant increases in injection rate in the years leading up to earthquake. For the same time period, the total volumes of injected wastewater were roughly equivale
Authors
Andrew J. Barbour, Jack H. Norbeck, Justin L. Rubinstein

Spatio-temporal evolution of the 2011 Prague, Oklahoma aftershock sequence revealed using subspace detection and relocation

The 6 November 2011 Mw 5.7 earthquake near Prague, Oklahoma is the second largest earthquake ever recorded in the state. A Mw 4.8 foreshock and the Mw 5.7 mainshock triggered a prolific aftershock sequence. Utilizing a subspace detection method, we increase by fivefold the number of precisely located events between 4 November and 5 December 2011. We find that while most aftershock energy is releas
Authors
Nicole D McMahon, Richard C. Aster, William L. Yeck, Daniel E. McNamara, Harley M. Benz

Middle and Late Pleistocene glaciations in the southwestern Pamir and their effects on topography

Glacial chronologies provide insight into the evolution of paleo-landscapes, paleoclimate, topography, and the erosion processes that shape mountain ranges. In the Pamir of Central Asia, glacial morphologies and deposits indicate extensive past glaciations, whose timing and extent remain poorly constrained. Geomorphic data and 15 new 10Be exposure ages from moraine boulders and roches moutonnées i
Authors
Konstanze Stubner, Elena Grin, Alan J. Hidy, Mirjam Schaller, Ryan D. Gold, Lothar Ratschbacher, Todd Ehlers

Trimming a hazard logic tree with a new model-order-reduction technique

The size of the logic tree within the Uniform California Earthquake Rupture Forecast Version 3, Time-Dependent (UCERF3-TD) model can challenge risk analyses of large portfolios. An insurer or catastrophe risk modeler concerned with losses to a California portfolio might have to evaluate a portfolio 57,600 times to estimate risk in light of the hazard possibility space. Which branches of the logic
Authors
Keith Porter, Edward H. Field, Kevin R. Milner

Sediment gravity flows triggered by remotely generated earthquake waves

Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our r
Authors
H. Paul Johnson, Joan S. Gomberg, Susan Hautala, Marie Salmi

A spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast

We, the ongoing Working Group on California Earthquake Probabilities, present a spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3), with the goal being to represent aftershocks, induced seismicity, and otherwise triggered events as a potential basis for operational earthquake forecasting (OEF). Specifically, we add an epidemic‐type aftershock sequ
Authors
Edward H. Field, Kevin R. Milner, Jeanne L. Hardebeck, Morgan T. Page, Nicholas van der Elst, Thomas H. Jordan, Andrew J. Michael, Bruce E. Shaw, Maximillan J. Werner

Subsurface geometry of the San Andreas fault in southern California: Results from the Salton Seismic Imaging Project (SSIP) and strong ground motion expectations

The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a
Authors
Gary S. Fuis, Klaus Bauer, Mark R. Goldman, Trond Ryberg, Victoria E. Langenheim, Daniel S. Scheirer, Michael J. Rymer, Joann M. Stock, John A. Hole, Rufus D. Catchings, Robert Graves, Brad T. Aagaard

Influence of lithostatic stress on earthquake stress drops in North America

We estimate stress drops for earthquakes in and near the continental United States using the method of spectral ratios. The ratio of acceleration spectra between collocated earthquakes recorded at a given station removes the effects of path and recording site and yields source parameters including corner frequency for, and the ratio of seismic moment between, the two earthquakes. We determine stre
Authors
Oliver S. Boyd, Daniel E. McNamara, Stephen H. Hartzell, George Choy

Earthquake source properties from instrumented laboratory stick-slip

Stick-slip experiments were performed to determine the influence of the testing apparatus on source properties, develop methods to relate stick-slip to natural earthquakes and examine the hypothesis of McGarr [2012] that the product of stiffness, k, and slip duration, Δt, is scale-independent and the same order as for earthquakes. The experiments use the double-direct shear geometry, Sierra White
Authors
Brian D. Kilgore, Arthur F. McGarr, Nicholas M. Beeler, David A. Lockner