Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2573

Climatic influence on the expression of strike-slip faulting

Earthquakes on strike-slip faults are preserved in the geomorphic record by offset landforms that span a range of displacements, from small offsets created in the most recent earthquake (MRE) to large offsets that record cumulative slip from multiple prior events. An exponential decay in the number of large cumulative offsets has been observed on many faults, and a leading hypothesis is that clima
Authors
Nadine G. Reitman, Yann Klinger, Richard W. Briggs, Ryan D. Gold

Probing the upper end of intracontinental earthquake magnitude: A prehistoric example from the Dzhungarian and Lepsy faults of Kazakhstan

The study of surface ruptures is key to understanding the earthquake occurrence of faults especially in the absence of historical events. We present a detailed analysis of geomorphic displacements along the Dzhungarian Fault, which straddles the border of China and Kazakhstan. We use digital elevation models derived from structure-from-motion analysis of Pléiades satellite imagery and drone imager
Authors
Chia-Hsin Tsai, Kanatbek Abdrakhmatov, Aidyn Mukambayev, Austin John Elliott, John R. Elliott, Christoph Grützner, Edward J. Rhodes, A. H. Ivester, R. T. Walker, Roberta Wilkinson

Physical properties of the crust influence aftershock locations

Aftershocks do not uniformly surround a mainshock, and instead occur in spatial clusters. Spatially variable physical properties of the crust may influence the spatial distribution of aftershocks. I study four aftershock sequences in Southern California (1992 Landers, 1999 Hector Mine, 2010 El Mayor—Cucapah, and 2019 Ridgecrest) to investigate which physical properties are spatially correlated wit
Authors
Jeanne L. Hardebeck

Survey of fragile geologic features and their quasi-static earthquake ground-motion constraints, southern Oregon

Fragile geologic features (FGFs), which are extant on the landscape but vulnerable to earthquake ground shaking, may provide geological constraints on the intensity of prior shaking. These empirical constraints are particularly important in regions such as the Pacific Northwest that have not experienced a megathrust earthquake in written history. Here, we describe our field survey of FGFs in south
Authors
Devin McPhillips, Katherine Scharer

Lower seismogenic depth model of western U.S. Earthquakes

We present a model of the lower seismogenic depth of earthquakes in the western United States (WUS) estimated using the hypocentral depths of events M > 1, a crustal temperature model, and historical earthquake rupture depth models. Locations of earthquakes are from the Advanced National Seismic System Comprehensive Earthquake Catalog from 1980 to 2021 supplemented with seismicity in southern Cali
Authors
Yuehua Zeng, Mark D. Petersen, Oliver S. Boyd

Monitoring offshore CO2 sequestration using marine CSEM methods; constraints inferred from field- and laboratory-based gas hydrate studies

Offshore geological sequestration of CO2 offers a viable approach for reducing greenhouse gas emissions into the atmosphere. Strategies include injection of CO2 into the deep-ocean or ocean-floor sediments, whereby depending on pressure–temperature conditions, CO2 can be trapped physically, gravitationally, or converted to CO2 hydrate. Energy-driven research continues to also advance CO2-for-CH4 r
Authors
Steven Constable, Laura A. Stern

A fault‐based crustal deformation model with deep driven dislocation sources for the 2023 update to the U.S. National Seismic Hazard Model

A fault‐based crustal deformation model with deep driven dislocation sources is applied to estimate long‐term on‐fault slip rates and off‐fault moment rate distribution in the western United States (WUS) for the 2023 update to the National Seismic Hazard Model (NSHM). This model uses the method of Zeng and Shen (2017) to invert for slip rate and strain‐rate parameters based on inputs from Global P
Authors
Yuehua Zeng

Limits to coseismic landslides triggered by Cascadia Subduction Zone earthquakes

Landslides are a significant hazard and dominant feature throughout the landscape of the Pacific Northwest. However, the hazard and risk posed by coseismic landslides triggered by great Cascadia Subduction Zone (CSZ) earthquakes is highly uncertain due to a lack of local and global data. Despite a wealth of other geologic evidence for past earthquakes on the Cascadia Subduction Zone, no landslides
Authors
Alex R. R. Grant, William Struble, Sean Richard LaHusen

What to expect when you are expecting earthquake early warning

We present a strategy for earthquake early warning (EEW) alerting that focuses on providing users with a target level of performance for their shaking level of interest (for example, ensuring that users receive warnings for at least 95 per cent of the occurrences of that shaking level). We explore the factors that can affect the accuracy of EEW shaking forecasts including site conditions (which ca
Authors
Sarah E. Minson, Elizabeth S. Cochran, Jessie Kate Saunders, Sara McBride, Stephen Wu, Annemarie S. Baltay, Kevin R. Milner

Seismic sources in the aleutian cradle of tsunamis

No abstract available.
Authors
Robert C. Witter, Richard W. Briggs, Tina Dura, Simon E. Engelhart, Alan Nelson

A study on the effect of site response on California seismic hazard map assessment

Prior studies have repeatedly shown that probabilistic seismic hazard maps from several different countries predict higher shaking than that observed. Previous map assessments have not, however, considered the influence of site response on hazard. Seismologists have long acknowledged the influence of near-surface geology, in particular low-impedance sediment layers, on earthquake ground-motion at
Authors
Molly M. Gallahue, Leah Marschall Salditch, Madeleine C. Lucas, James S. Neely, Seth Stein, Norman A. Abrahamson, Tessa Williams, Susan E. Hough