Skip to main content
U.S. flag

An official website of the United States government

Water, Coasts and Ice

Warming temperatures and shifting weather patterns are causing major changes in water and ice availability, sea levels, and aquatic nutrient cycles across the country. CASC-supported scientists are examining how water, ice, and coastal ecosystems and communities across the United States are being affected by climate change. Browse our projects below or use our Project Explorer database to explore our science on this topic.

Filter Total Items: 165

Understanding the Nexus between Climate, Streamflow, Water Quality, and Ecology in the Arkansas-Red River Basin

Currently, maintaining appropriate flows to support biological integrity is difficult for larger riverine ecosystems. Climate change, through increased temperature, reduced rainfall, and increased rainfall intensity, is expected to reduce water availability and exacerbate the maintenance of ecological flows in the Arkansas-Red River basin. Understanding the nexus among climate change effects on st
link

Understanding the Nexus between Climate, Streamflow, Water Quality, and Ecology in the Arkansas-Red River Basin

Currently, maintaining appropriate flows to support biological integrity is difficult for larger riverine ecosystems. Climate change, through increased temperature, reduced rainfall, and increased rainfall intensity, is expected to reduce water availability and exacerbate the maintenance of ecological flows in the Arkansas-Red River basin. Understanding the nexus among climate change effects on st
Learn More

Analyzing and Communicating the Ability of Data and Models to Simulate Streamflow and Answer Resource Management Questions

To date, hydrological and ecological models have been developed independently from each other, making their application particularly challenging for interdisciplinary studies. The objective of this project was to synthesize and evaluate prevailing hydrological and ecological models in the South-Central U.S., particularly the southern Great Plains region. This analysis aimed to identify the data re
link

Analyzing and Communicating the Ability of Data and Models to Simulate Streamflow and Answer Resource Management Questions

To date, hydrological and ecological models have been developed independently from each other, making their application particularly challenging for interdisciplinary studies. The objective of this project was to synthesize and evaluate prevailing hydrological and ecological models in the South-Central U.S., particularly the southern Great Plains region. This analysis aimed to identify the data re
Learn More

Assessing Climate-Sensitive Ecosystems in the Southeastern U.S.

The southeastern U.S. contains a unique diversity of ecosystems that provide important benefits, including habitat for rare wildlife and plants, improved water quality, and recreation opportunities. Understanding how climate change will affect these ecosystems is vital for knowing how best to protect them and the services they supply. The goal of this project was to assess the climate change vulne
link

Assessing Climate-Sensitive Ecosystems in the Southeastern U.S.

The southeastern U.S. contains a unique diversity of ecosystems that provide important benefits, including habitat for rare wildlife and plants, improved water quality, and recreation opportunities. Understanding how climate change will affect these ecosystems is vital for knowing how best to protect them and the services they supply. The goal of this project was to assess the climate change vulne
Learn More

Assessing the Potential Impact of Sea-Level Rise on Submersed Aquatic Vegetation and Waterfowl in the Northern Gulf of Mexico

Submersed aquatic vegetation (SAV) communities are highly productive ecosystems that provide significant ecological benefits to coastal areas, including essential calories for wintering waterfowl. However, the potential effects of sea-level rise is posing new questions about the future availability of SAV for waterfowl and other coastal wildlife. Of primary concern is the fact that rising seas hav
link

Assessing the Potential Impact of Sea-Level Rise on Submersed Aquatic Vegetation and Waterfowl in the Northern Gulf of Mexico

Submersed aquatic vegetation (SAV) communities are highly productive ecosystems that provide significant ecological benefits to coastal areas, including essential calories for wintering waterfowl. However, the potential effects of sea-level rise is posing new questions about the future availability of SAV for waterfowl and other coastal wildlife. Of primary concern is the fact that rising seas hav
Learn More

Climate Change and Peak Flows: Informing Managers About Future Impacts to Streamflow Dynamics and Aquatic Habitat

What will the rivers of the Pacific Northwest look like in the future? Will they be stable or unstable? Will the waters be cold and clear or warm and muddy? Will they have salmon or other species? These questions motivated our two-year study of climate warming effects on headwater streams draining the Cascade Mountains. Using a novel combination of snow, geohydrology, and sediment transport models
link

Climate Change and Peak Flows: Informing Managers About Future Impacts to Streamflow Dynamics and Aquatic Habitat

What will the rivers of the Pacific Northwest look like in the future? Will they be stable or unstable? Will the waters be cold and clear or warm and muddy? Will they have salmon or other species? These questions motivated our two-year study of climate warming effects on headwater streams draining the Cascade Mountains. Using a novel combination of snow, geohydrology, and sediment transport models
Learn More

Climate Change Vulnerability of the Pyramid Lake Paiute Tribe in the Southwest

Native Americans are one of the most vulnerable populations to climate change in the United States because of their reliance upon the natural environment for food, livelihood, and cultural traditions. In the Southwest, where the temperature and precipitation changes from climate change are expected to be particularly severe, tribal communities may be especially vulnerable. Through this project, re
link

Climate Change Vulnerability of the Pyramid Lake Paiute Tribe in the Southwest

Native Americans are one of the most vulnerable populations to climate change in the United States because of their reliance upon the natural environment for food, livelihood, and cultural traditions. In the Southwest, where the temperature and precipitation changes from climate change are expected to be particularly severe, tribal communities may be especially vulnerable. Through this project, re
Learn More

Developing a Comprehensive Terrestrial Habitat Map for the Northeastern U.S. and Atlantic Canada to Inform Planning Decisions

The Northeast United States and Atlantic Canada share many of the same types of forests, wetlands, and natural communities, and from a wildlife perspective the region is one contiguous forest. However, resources are classified and mapped differently on the two sides of the border, creating challenges for habitat evaluation, species modeling, and predicting the effects of climate change. To remedy
link

Developing a Comprehensive Terrestrial Habitat Map for the Northeastern U.S. and Atlantic Canada to Inform Planning Decisions

The Northeast United States and Atlantic Canada share many of the same types of forests, wetlands, and natural communities, and from a wildlife perspective the region is one contiguous forest. However, resources are classified and mapped differently on the two sides of the border, creating challenges for habitat evaluation, species modeling, and predicting the effects of climate change. To remedy
Learn More

Ecological Implications of Mangrove Forest Migration in the Southeastern U.S.

Coastal wetlands purify water, protect coastal communities from storms, sequester (store) carbon, and provide habitat for fish and wildlife. They are also vulnerable to climate change. In particular, changes in winter climate (warmer temperatures and fewer freeze events) may transform coastal wetlands in the northern Gulf of Mexico, as mangrove forests are expected to expand their range and replac
link

Ecological Implications of Mangrove Forest Migration in the Southeastern U.S.

Coastal wetlands purify water, protect coastal communities from storms, sequester (store) carbon, and provide habitat for fish and wildlife. They are also vulnerable to climate change. In particular, changes in winter climate (warmer temperatures and fewer freeze events) may transform coastal wetlands in the northern Gulf of Mexico, as mangrove forests are expected to expand their range and replac
Learn More

Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1

In California, the near-shore area where the ocean meets the land is a highly productive yet sensitive region that supports a wealth of wildlife, including several native bird species. These saltmarshes, mudflats, and shallow bays are not only critical for wildlife, but they also provide economic and recreational benefits to local communities. Today, sea-level rise, more frequent and stronger stor
link

Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1

In California, the near-shore area where the ocean meets the land is a highly productive yet sensitive region that supports a wealth of wildlife, including several native bird species. These saltmarshes, mudflats, and shallow bays are not only critical for wildlife, but they also provide economic and recreational benefits to local communities. Today, sea-level rise, more frequent and stronger stor
Learn More

Evaluating Sea-level Rise Impacts in the Northeastern U.S.

In 2010, 39 percent of the U.S.population lived near the coast. This population is expected to increase by 8 percent from 2010 to 2020. Coastal regions are also home to species and habitats that provide critical services to humans, such as wetlands that buffer coasts from storms. Therefore, sea-level rise and the associated changes in coastlines challenge both human communities and ecosystems. Und
link

Evaluating Sea-level Rise Impacts in the Northeastern U.S.

In 2010, 39 percent of the U.S.population lived near the coast. This population is expected to increase by 8 percent from 2010 to 2020. Coastal regions are also home to species and habitats that provide critical services to humans, such as wetlands that buffer coasts from storms. Therefore, sea-level rise and the associated changes in coastlines challenge both human communities and ecosystems. Und
Learn More

Evaluating the Impacts of Climate Extremes on Karst Hydrology and Species Vulnerability

Karst aquifers—formed when the movement of water dissolves bedrock—are critical groundwater resources in North America. Water moving through these aquifers carves out magnificent caves, sinkholes, and other formations. These formations are home to high concentrations of rare and endangered species, but the hydrological conditions that support these species can change rapidly. Managing these ecosys
link

Evaluating the Impacts of Climate Extremes on Karst Hydrology and Species Vulnerability

Karst aquifers—formed when the movement of water dissolves bedrock—are critical groundwater resources in North America. Water moving through these aquifers carves out magnificent caves, sinkholes, and other formations. These formations are home to high concentrations of rare and endangered species, but the hydrological conditions that support these species can change rapidly. Managing these ecosys
Learn More

Evaluating the Use of Models for Projecting Future Water Flow in the Southeast

Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in
link

Evaluating the Use of Models for Projecting Future Water Flow in the Southeast

Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in
Learn More