Skip to main content
U.S. flag

An official website of the United States government

Coasts

Filter Total Items: 24

Long Island Sound Spatially Referenced Regressions on Watershed Attributes (SPARROW) Models

The U.S. Geological Survey, New England Water Science Center, in collaboration with the U.S. Environmental Protection Agency (EPA), is modeling seasonal nutrient loads to Long Island Sound (LIS). Nutrients that originate from within the 41,867-square-mile section of the LIS watershed that is north of the Sound include both point (specific) and nonpoint (widespread) sources. Dynamic modeling of the...
link

Long Island Sound Spatially Referenced Regressions on Watershed Attributes (SPARROW) Models

The U.S. Geological Survey, New England Water Science Center, in collaboration with the U.S. Environmental Protection Agency (EPA), is modeling seasonal nutrient loads to Long Island Sound (LIS). Nutrients that originate from within the 41,867-square-mile section of the LIS watershed that is north of the Sound include both point (specific) and nonpoint (widespread) sources. Dynamic modeling of the...
Learn More

Base-Flow Water Quality Sampling in Small Basins Draining to Long Island Sound

During the past 20 years, nitrogen loads to Long Island Sound (LIS) have been substantially reduced in large watersheds affected by municipal wastewater loads.
link

Base-Flow Water Quality Sampling in Small Basins Draining to Long Island Sound

During the past 20 years, nitrogen loads to Long Island Sound (LIS) have been substantially reduced in large watersheds affected by municipal wastewater loads.
Learn More

Water Quality Sampling in the Tributaries of the Long Island Sound

Coastal estuaries in southern New England and New York show the effects of excess nutrients and coastal eutrophication. These include excessive growth of macroalgae, excessive blooms of phytoplankton, oxygen depletion, hypoxia and deteriorated substrates. State and Federal regulators have responded to these nutrient-caused impairments by requiring more stringent permit limits for National...
link

Water Quality Sampling in the Tributaries of the Long Island Sound

Coastal estuaries in southern New England and New York show the effects of excess nutrients and coastal eutrophication. These include excessive growth of macroalgae, excessive blooms of phytoplankton, oxygen depletion, hypoxia and deteriorated substrates. State and Federal regulators have responded to these nutrient-caused impairments by requiring more stringent permit limits for National...
Learn More

Embayment Monitoring to Support Nutrient Management Activities in Connecticut for Long Island Sound

The USGS, in cooperation with the Connecticut Department of Energy and Environmental Protection will be collecting water-quality and hydrologic data at four embayments from April 2021 to March 2025: Mystic, Norwalk, Saugatuck, Sasco-Southport complex, and Farm.
link

Embayment Monitoring to Support Nutrient Management Activities in Connecticut for Long Island Sound

The USGS, in cooperation with the Connecticut Department of Energy and Environmental Protection will be collecting water-quality and hydrologic data at four embayments from April 2021 to March 2025: Mystic, Norwalk, Saugatuck, Sasco-Southport complex, and Farm.
Learn More

COAWST: A Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System

Understanding the processes responsible for coastal change is important for managing both our natural and economic coastal resources. Storms are one of the primary driving forces causing coastal change from a coupling of wave- and wind-driven flows. To better understand storm impacts and their effects on our coastlines, there is an international need to better predict storm paths and intensities...
link

COAWST: A Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System

Understanding the processes responsible for coastal change is important for managing both our natural and economic coastal resources. Storms are one of the primary driving forces causing coastal change from a coupling of wave- and wind-driven flows. To better understand storm impacts and their effects on our coastlines, there is an international need to better predict storm paths and intensities...
Learn More

Coastal Change Hazards

Natural processes such as waves, tides, and weather, continually change coastal landscapes. The integrity of coastal homes, businesses, and infrastructure can be threatened by hazards associated with event-driven changes, such as extreme storms and their impacts on beach and dune erosion, or longer-term, cumulative changes associated with coastal and marine processes, such as sea-level rise...
link

Coastal Change Hazards

Natural processes such as waves, tides, and weather, continually change coastal landscapes. The integrity of coastal homes, businesses, and infrastructure can be threatened by hazards associated with event-driven changes, such as extreme storms and their impacts on beach and dune erosion, or longer-term, cumulative changes associated with coastal and marine processes, such as sea-level rise...
Learn More

Assessment of fecal contamination sources to Alley Creek, Queens County, New York

PROBLEM Alley Creek, a tributary to Little Neck Bay (Queens County, New York; figure 1) has been designated as impaired by the New York State Department of Environmental Conservation (NYS DEC) for primary and secondary contact and included on the 303(d) Impaired Waterways for pathogens related to combined sewer overflow contributions. The New York City Department of Environmental Protection (NYC
link

Assessment of fecal contamination sources to Alley Creek, Queens County, New York

PROBLEM Alley Creek, a tributary to Little Neck Bay (Queens County, New York; figure 1) has been designated as impaired by the New York State Department of Environmental Conservation (NYS DEC) for primary and secondary contact and included on the 303(d) Impaired Waterways for pathogens related to combined sewer overflow contributions. The New York City Department of Environmental Protection (NYC
Learn More

Connecticut Water Use

Background The U.S. Geological Survey has compiled the Nation's water-use data at the county, State, and national levels every 5 years between 1950 and 2015 . - The New England Water Science Center (WSC) collected, reviewed, and aggregated water withdrawal data in Massachusetts from different sources (groundwater and surface water in both fresh and saline settings) as a part of the national effort...
link

Connecticut Water Use

Background The U.S. Geological Survey has compiled the Nation's water-use data at the county, State, and national levels every 5 years between 1950 and 2015 . - The New England Water Science Center (WSC) collected, reviewed, and aggregated water withdrawal data in Massachusetts from different sources (groundwater and surface water in both fresh and saline settings) as a part of the national effort...
Learn More

Sea-Level Rise Hazards and Decision Support

The Sea-Level Rise Hazards and Decision-Support project assesses present and future coastal vulnerability to provide actionable information for management of our Nation’s coasts. Through multidisciplinary research and collaborative partnerships with decision-makers, physical, biological, and social factors that describe landscape and habitat changes are incorporated in a probabilistic modeling...
link

Sea-Level Rise Hazards and Decision Support

The Sea-Level Rise Hazards and Decision-Support project assesses present and future coastal vulnerability to provide actionable information for management of our Nation’s coasts. Through multidisciplinary research and collaborative partnerships with decision-makers, physical, biological, and social factors that describe landscape and habitat changes are incorporated in a probabilistic modeling...
Learn More

Water Quality Sampling and Monitoring of the Pawcatuck River Watershed

The Pawcatuck River and the Pawcatuck River Estuary and Little Narragansett Bay form part of the boundary between the States of Connecticut and Rhode Island. Both states have identified water quality impairments within these waters related to nutrients (insufficient oxygen) and bacteria. Studies of the eutrophication potential of Long Island Sound embayments have identified that the Pawcatuck...
link

Water Quality Sampling and Monitoring of the Pawcatuck River Watershed

The Pawcatuck River and the Pawcatuck River Estuary and Little Narragansett Bay form part of the boundary between the States of Connecticut and Rhode Island. Both states have identified water quality impairments within these waters related to nutrients (insufficient oxygen) and bacteria. Studies of the eutrophication potential of Long Island Sound embayments have identified that the Pawcatuck...
Learn More

Development of a Regional-Scale Model to Simulate Groundwater Flow and Nitrogen Loading in Watersheds Along the Connecticut Coast of Long Island Sound

In 2018 USGS began work on the development of regional-scale groundwater flow and nitrogen transport models of areas along the Connecticut coast. The model will be used as a quantitative tool to evaluate groundwater flow and nitrogen loading to Long Island Sound.
link

Development of a Regional-Scale Model to Simulate Groundwater Flow and Nitrogen Loading in Watersheds Along the Connecticut Coast of Long Island Sound

In 2018 USGS began work on the development of regional-scale groundwater flow and nitrogen transport models of areas along the Connecticut coast. The model will be used as a quantitative tool to evaluate groundwater flow and nitrogen loading to Long Island Sound.
Learn More

Estuarine Processes, Hazards, and Ecosystems

Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...
link

Estuarine Processes, Hazards, and Ecosystems

Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...
Learn More