Skip to main content
U.S. flag

An official website of the United States government

Discharge Data

Filter Total Items: 7

Long Island Sound Spatially Referenced Regressions on Watershed Attributes (SPARROW) Models

The U.S. Geological Survey, New England Water Science Center, in collaboration with the U.S. Environmental Protection Agency (EPA), is modeling seasonal nutrient loads to Long Island Sound (LIS). Nutrients that originate from within the 41,867-square-mile section of the LIS watershed that is north of the Sound include both point (specific) and nonpoint (widespread) sources. Dynamic modeling of the...
link

Long Island Sound Spatially Referenced Regressions on Watershed Attributes (SPARROW) Models

The U.S. Geological Survey, New England Water Science Center, in collaboration with the U.S. Environmental Protection Agency (EPA), is modeling seasonal nutrient loads to Long Island Sound (LIS). Nutrients that originate from within the 41,867-square-mile section of the LIS watershed that is north of the Sound include both point (specific) and nonpoint (widespread) sources. Dynamic modeling of the...
Learn More

Base-Flow Water Quality Sampling in Small Basins Draining to Long Island Sound

During the past 20 years, nitrogen loads to Long Island Sound (LIS) have been substantially reduced in large watersheds affected by municipal wastewater loads.
link

Base-Flow Water Quality Sampling in Small Basins Draining to Long Island Sound

During the past 20 years, nitrogen loads to Long Island Sound (LIS) have been substantially reduced in large watersheds affected by municipal wastewater loads.
Learn More

Embayment Monitoring to Support Nutrient Management Activities in Connecticut for Long Island Sound

The USGS, in cooperation with the Connecticut Department of Energy and Environmental Protection will be collecting water-quality and hydrologic data at four embayments from April 2021 to March 2025: Mystic, Norwalk, Saugatuck, Sasco-Southport complex, and Farm.
link

Embayment Monitoring to Support Nutrient Management Activities in Connecticut for Long Island Sound

The USGS, in cooperation with the Connecticut Department of Energy and Environmental Protection will be collecting water-quality and hydrologic data at four embayments from April 2021 to March 2025: Mystic, Norwalk, Saugatuck, Sasco-Southport complex, and Farm.
Learn More

Assessment of fecal contamination sources to Alley Creek, Queens County, New York

PROBLEM Alley Creek, a tributary to Little Neck Bay (Queens County, New York; figure 1) has been designated as impaired by the New York State Department of Environmental Conservation (NYS DEC) for primary and secondary contact and included on the 303(d) Impaired Waterways for pathogens related to combined sewer overflow contributions. The New York City Department of Environmental Protection (NYC
link

Assessment of fecal contamination sources to Alley Creek, Queens County, New York

PROBLEM Alley Creek, a tributary to Little Neck Bay (Queens County, New York; figure 1) has been designated as impaired by the New York State Department of Environmental Conservation (NYS DEC) for primary and secondary contact and included on the 303(d) Impaired Waterways for pathogens related to combined sewer overflow contributions. The New York City Department of Environmental Protection (NYC
Learn More

Water Quality Sampling and Monitoring of the Pawcatuck River Watershed

The Pawcatuck River and the Pawcatuck River Estuary and Little Narragansett Bay form part of the boundary between the States of Connecticut and Rhode Island. Both states have identified water quality impairments within these waters related to nutrients (insufficient oxygen) and bacteria. Studies of the eutrophication potential of Long Island Sound embayments have identified that the Pawcatuck...
link

Water Quality Sampling and Monitoring of the Pawcatuck River Watershed

The Pawcatuck River and the Pawcatuck River Estuary and Little Narragansett Bay form part of the boundary between the States of Connecticut and Rhode Island. Both states have identified water quality impairments within these waters related to nutrients (insufficient oxygen) and bacteria. Studies of the eutrophication potential of Long Island Sound embayments have identified that the Pawcatuck...
Learn More

Development of a Regional-Scale Model to Simulate Groundwater Flow and Nitrogen Loading in Watersheds Along the Connecticut Coast of Long Island Sound

In 2018 USGS began work on the development of regional-scale groundwater flow and nitrogen transport models of areas along the Connecticut coast. The model will be used as a quantitative tool to evaluate groundwater flow and nitrogen loading to Long Island Sound.
link

Development of a Regional-Scale Model to Simulate Groundwater Flow and Nitrogen Loading in Watersheds Along the Connecticut Coast of Long Island Sound

In 2018 USGS began work on the development of regional-scale groundwater flow and nitrogen transport models of areas along the Connecticut coast. The model will be used as a quantitative tool to evaluate groundwater flow and nitrogen loading to Long Island Sound.
Learn More

Using Microbial Source Tracking to Identify Pollution Sources in Pathogen Impaired Embayments in Long Island, New York

Problem The presence of pathogens in Long Island marine embayments and the hazards they pose to marine resources and human health is of increasing concern. Many waterbodies on the New York State Section 303(d) List of Impaired Waters have pathogens listed as the primary pollutant that are suspected to originate from urban/storm runoff. There is neither a clear understanding of the relative magnit
link

Using Microbial Source Tracking to Identify Pollution Sources in Pathogen Impaired Embayments in Long Island, New York

Problem The presence of pathogens in Long Island marine embayments and the hazards they pose to marine resources and human health is of increasing concern. Many waterbodies on the New York State Section 303(d) List of Impaired Waters have pathogens listed as the primary pollutant that are suspected to originate from urban/storm runoff. There is neither a clear understanding of the relative magnit
Learn More