Skip to main content
U.S. flag

An official website of the United States government

Publications

The USGS fire science mission is to produce and deliver the best available scientific information, tools, and products to support land and emergency management by individuals and organizations at all levels. Below are USGS publications associated with our fire science portfolio. 

Filter Total Items: 306

Fire, climate and changing forests

A changing climate implies potential transformations in plant demography, communities, and disturbances such as wildfire and insect outbreaks. How do these dynamics play out in terrestrial ecosystems across scales of space and time? “Vegetation type conversion” (VTC) is a term used to describe abrupt and long-lasting changes in vegetation structure and composition due to various kinds of perturbat
Authors
Jon Keeley, Phillip J. van Mantgem, Donald A. Falk

Twenty-first century California, USA, wildfires: Fuel-dominated vs. wind-dominated fires

Since the beginning of the twenty-first century California, USA, has experienced a substantial increase in the frequency of large wildfires, often with extreme impacts on people and property. Due to the size of the state, it is not surprising that the factors driving these changes differ across this region. Although there are always multiple factors driving wildfire behavior, we believe a helpful
Authors
Jon Keeley, Alexandra D. Syphard

LANDFIRE remap prototype mapping effort: Developing a new framework for mapping vegetation classification, change, and structure

LANDFIRE (LF) National (2001) was the original product suite of the LANDFIRE program, which included Existing Vegetation Cover (EVC), Height (EVH), and Type (EVT). Subsequent refinements after feedback from data users resulted in updated products, referred to as LF 2001, that now served as LANDFIRE’s baseline datasets and are the basis for all subsequent LANDFIRE updates. These updates account for
Authors
Joshua J. Picotte, Daryn Dockter, Jordan Long, Brian L. Tolk, Anne Davidson, Birgit Peterson

Negative impacts of summer heat on Sierra Nevada tree seedlings

Understanding the response of forests to climate change is important for predicting changes in biodiversity and ecosystem services, including carbon storage. Seedlings represent a key demographic stage in these responses, because seedling establishment is necessary for population persistence and spread, and because the conditions allowing seedlings to survive and grow are often more restrictive th
Authors
Emily V. Moran, Adrian J. Das, Jon Keeley, Nathan L. Stephenson

Hydroseeding tackifiers and dryland moss restoration potential

Tackifiers are long‐chain carbon compounds used for soil stabilization and hydroseeding and could provide a vehicle for biological soil crust restoration. We examined the sensitivity of two dryland mosses, Bryum argenteum and Syntrichia ruralis, to three common tackifiers ‐ guar, psyllium, and polyacrylamide (PAM) ‐ at 0.5x, 1.0x, and 2.0x of recommended (x) concentrations for erosion control and
Authors
W. Dillon Blankenship, Lea A. Condon, David A. Pyke

Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance

The apparent failure of ecosystems to recover from increasingly widespread disturbance is a global concern. Despite growing focus on factors inhibiting resilience and restoration, we still know very little about how demographic and population processes influence recovery. Using inverse and forward demographic modelling of 531 post‐fire sagebrush populations across the western US, we show that demo
Authors
Robert K. Shriver, Caitlin M. Andrews, Robert Arkle, David Barnard, Michael C. Duniway, Matthew J. Germino, David S. Pilliod, David A. Pyke, Justin L. Welty, John B. Bradford

A 4000-year history of debris flows in north-central Washington State, U.S.A.: Preliminary results from trenching and surficial geologic mapping at the Pope Creek fan

Long-term records of the magnitude and frequency of debris flows on fans are rare, but such records provide critical information needed for debris-flow hazard and risk assessments. This study explores the history of debris flows on a fan with seasonally inhabited cabins at Pope Creek along the Entiat River about 48 km upstream from the town of Entiat, Washington. Motivation for this study was prov
Authors
Jeffrey A. Coe, Erin Bessette-Kirton, Stephen Slaughter, Francis K. Rengers, Trevor A. Contreras, Katherin A Michelson, Emily Taylor, Jason W. Kean, Kara Jacobacci, Molly A Hanson

Exploring controls on debris-flow surge velocity and peak discharge at Chalk Cliffs, Colorado, USA

We present a series of debris-flow events and use combined sensor and video data to explore how sediment concentration and triggering rainfall intensity affect the velocity and discharge of debris-flow surges generated by surface-water runoff. We analyze an initial data set of 49 surges from four debris-flow events recorded by a monitoring system at Chalk Cliffs, Colorado and compare measurements
Authors
Joel B. Smith, Jason W. Kean, Jeffrey A. Coe

An evaluation of debris-flow runout model accuracy and complexity in Montecito, CA: Towards a framework for regional inundation-hazard forecasting

Numerous debris-flow inundation models have been applied retroactively to noteworthy events around the world. While such studies can be useful in identifying controlling factors, calibrating model parameters, and assessing future hazards in specific study areas, model parameters tailored to individual events can be difficult to apply regionally. The advancement of debris-flow modeling applications
Authors
Erin Bessette-Kirton, Jason W. Kean, Jeffrey A. Coe, Francis K. Rengers, Dennis M. Staley

Looking through the window of disturbance at post-wildfire debris-flow hazards

The extreme heat from wildfire alters soil properties and incinerates vegetation, leading to changes in infiltration capacity, ground cover, soil erodibility, and rainfall interception. These changes promote increases in runoff and sediment transport that increase the likelihood of runoff-generated debris flows. Over a period of several years, referred to as the window of disturbance, the landscap
Authors
Luke McGuire, Francis K. Rengers, Jason W. Kean, Dennis M. Staley, Hui Tang, Ann Youberg

Climate and disturbance influence self-sustaining stand dynamics of aspen (Populus tremuloides) near its range margin

Species that are primarily seral may form stable (self-sustaining) communities under certain disturbance regimes or environmental conditions, yet such populations may also be particularly vulnerable to ecological change. Aspen (Populus spp.) are generally considered seral throughout the northern hemisphere, including P. tremuloides, the most widely distributed tree species in North America. Recent
Authors
Douglas J. Shinneman, Susan McIlroy

Soil characteristics are associated with gradients of big sagebrush canopy structure after disturbance

Reestablishing shrub canopy cover after disturbance in semi-arid ecosystems, such as sagebrush steppe, is essential to provide wildlife habitat and restore ecosystem functioning. While several studies have explored the effects of landscape and climate factors on the success or failure of sagebrush seeding, the influence of soil properties on gradients of shrub canopy structure in successfully seed
Authors
David Barnard, Matthew J. Germino, Robert Arkle, John Bradford, Michael Duniway, David Pilliod, David Pyke, Robert Shriver, Justin Welty