Skip to main content
U.S. flag

An official website of the United States government

Plant, Animal, and Ecosystem Effects

Fires can have both negative and positive effects on plants, animals, and ecosystems. USGS scientists investigate the interactions between fires and the species that may be affected by them to better understand how different management actions may influece wildlife or species of concernt to resource managers.

Filter Total Items: 51

Using Vegetation Trends and Fire Risk Simulations to Prioritize Management Interventions on National Park Service Lands in Southern Idaho

City of Rocks National Reserve and Craters of the Moon National Monument and Preserve are lands managed by the National Park Service that contain ecologically valuable stands of sagebrush and unique forest communities that are at risk due to wildfire and invasion by exotic annual grasses. We are working to determine the extent of invasion and to provide park managers with wildfire risk assessments...
link

Using Vegetation Trends and Fire Risk Simulations to Prioritize Management Interventions on National Park Service Lands in Southern Idaho

City of Rocks National Reserve and Craters of the Moon National Monument and Preserve are lands managed by the National Park Service that contain ecologically valuable stands of sagebrush and unique forest communities that are at risk due to wildfire and invasion by exotic annual grasses. We are working to determine the extent of invasion and to provide park managers with wildfire risk assessments...
Learn More

New Tools for Modern Land Management Decisions

In an era of rapid land use changes and shifting climates, it is imperative that land managers and policymakers have actionable and current information available for decision processes. In this work, we seek to meet these needs through new data products and decision support tools built on digital soil mapping, new vegetation cover maps, agency inventory and monitoring data sets, and cutting-edge...
link

New Tools for Modern Land Management Decisions

In an era of rapid land use changes and shifting climates, it is imperative that land managers and policymakers have actionable and current information available for decision processes. In this work, we seek to meet these needs through new data products and decision support tools built on digital soil mapping, new vegetation cover maps, agency inventory and monitoring data sets, and cutting-edge...
Learn More

Climate-Smart Vegetation Treatments - Using 15 Years of SageSTEP Data to Inform Management of Resilient Ecosystems

Land managers require clear, forward-looking information about where and how vegetation treatments may make the greatest difference for drought resilience in sagebrush and woodland ecosystems. We are using soil moisture and vegetation data from SageSTEP-- a long-term ecological study on fuel treatments in the Great Basin-- to analyze soil moisture dynamics and vegetation responses after common...
link

Climate-Smart Vegetation Treatments - Using 15 Years of SageSTEP Data to Inform Management of Resilient Ecosystems

Land managers require clear, forward-looking information about where and how vegetation treatments may make the greatest difference for drought resilience in sagebrush and woodland ecosystems. We are using soil moisture and vegetation data from SageSTEP-- a long-term ecological study on fuel treatments in the Great Basin-- to analyze soil moisture dynamics and vegetation responses after common...
Learn More

Prioritizing conifer removal for multi-species outcomes

Wildlife management is frequently conducted to benefit a single species, despite evidence that suggests such an approach often fails to adequately address the needs of other species within a region. Managing for multiple species’ habitat requirements is even more critical when large scale habitat management efforts change vegetation conditions at the landscape scale, or when management occurs at...
link

Prioritizing conifer removal for multi-species outcomes

Wildlife management is frequently conducted to benefit a single species, despite evidence that suggests such an approach often fails to adequately address the needs of other species within a region. Managing for multiple species’ habitat requirements is even more critical when large scale habitat management efforts change vegetation conditions at the landscape scale, or when management occurs at...
Learn More

Soil-climate for Managing Sagebrush Ecosystems

Soil-climate describes the temperature and moisture conditions important for plant growth and function. Soil condition patterns determine which vegetation is most abundant, thus controlling which habitats, invasive species, fuels, and economic activities are present in a region. Here, we use a model to simulate the vertical movement of water in a soil profile to provide insights into landscape...
link

Soil-climate for Managing Sagebrush Ecosystems

Soil-climate describes the temperature and moisture conditions important for plant growth and function. Soil condition patterns determine which vegetation is most abundant, thus controlling which habitats, invasive species, fuels, and economic activities are present in a region. Here, we use a model to simulate the vertical movement of water in a soil profile to provide insights into landscape...
Learn More

Future Scenarios of Soil-climate for Sagebrush Ecosystems

Climate forecasts provide a unique tool to researchers and wildlife managers, allowing for a look into potential future climate conditions. Climate models provide multiple scenarios that assume different mitigation polices implemented by governments. By using these data in a statistical model to estimate soil-climate conditions, we can investigate the connection between future climate and...
link

Future Scenarios of Soil-climate for Sagebrush Ecosystems

Climate forecasts provide a unique tool to researchers and wildlife managers, allowing for a look into potential future climate conditions. Climate models provide multiple scenarios that assume different mitigation polices implemented by governments. By using these data in a statistical model to estimate soil-climate conditions, we can investigate the connection between future climate and...
Learn More

Understanding the Sagebrush Steppe’s Threshold for Transitions Through Resistance and Resilience Models

We are investigating ecosystem transitions and thresholds in the sagebrush steppe, studying factors influencing the shift from native to invaded plant communities after disturbances like fire. Our research tests region-wide resistance and resilience models, focusing on real-world recovery patterns, pre-fire conditions, plant succession, and land management treatments.
link

Understanding the Sagebrush Steppe’s Threshold for Transitions Through Resistance and Resilience Models

We are investigating ecosystem transitions and thresholds in the sagebrush steppe, studying factors influencing the shift from native to invaded plant communities after disturbances like fire. Our research tests region-wide resistance and resilience models, focusing on real-world recovery patterns, pre-fire conditions, plant succession, and land management treatments.
Learn More

Assessing invasive annual grass treatment efficacy across the sagebrush biome

We are using existing datasets that span broad spatial and temporal extents to model the efficacy of invasive annual grass treatments across the sagebrush biome and the influence of environmental factors on their success. The models we develop will be used to generate maps of predicted treatment efficacy across the biome, which will be integrated into the Land Treatment Exploration Tool for land...
link

Assessing invasive annual grass treatment efficacy across the sagebrush biome

We are using existing datasets that span broad spatial and temporal extents to model the efficacy of invasive annual grass treatments across the sagebrush biome and the influence of environmental factors on their success. The models we develop will be used to generate maps of predicted treatment efficacy across the biome, which will be integrated into the Land Treatment Exploration Tool for land...
Learn More

Creating range-wide predictive maps of Greater Sage-Grouse seasonal habitats

Through a collaborative effort with multiple state and federal agencies, university researchers, and individual stakeholders, we are producing a set of predictive seasonal habitat maps for greater sage-grouse ( Centrocercus urophasianus ) spanning the entirety of the species’ U.S. distribution. This is the largest habitat modeling effort of its kind for the species and uses a large, compiled...
link

Creating range-wide predictive maps of Greater Sage-Grouse seasonal habitats

Through a collaborative effort with multiple state and federal agencies, university researchers, and individual stakeholders, we are producing a set of predictive seasonal habitat maps for greater sage-grouse ( Centrocercus urophasianus ) spanning the entirety of the species’ U.S. distribution. This is the largest habitat modeling effort of its kind for the species and uses a large, compiled...
Learn More

Predicting Recovery of Sagebrush Ecosystems Across the Sage-grouse Range from Remotely Sensed Vegetation Data

USGS researchers are using remote-sensing and other broadscale datasets to study and predict recovery of sagebrush across the sage-grouse range, assessing influence of disturbance, restoration treatments, soil moisture, and other ecological conditions on trends in sagebrush cover. The results will be used to inform conservation prioritization models, economic analyses, climate change projections...
link

Predicting Recovery of Sagebrush Ecosystems Across the Sage-grouse Range from Remotely Sensed Vegetation Data

USGS researchers are using remote-sensing and other broadscale datasets to study and predict recovery of sagebrush across the sage-grouse range, assessing influence of disturbance, restoration treatments, soil moisture, and other ecological conditions on trends in sagebrush cover. The results will be used to inform conservation prioritization models, economic analyses, climate change projections...
Learn More

Understanding Population Trends for the Gunnison Sage-Grouse to Inform Adaptive Management

In partnership with the Bureau of Land Management and Colorado Parks and Wildlife, scientists from USGS Fort Collins Science Center and Western Ecological Research Center are applying a hierarchical monitoring framework to Gunnison sage-grouse ( Centrocercus minimus ) to evaluate population trends and inform adaptive management.
link

Understanding Population Trends for the Gunnison Sage-Grouse to Inform Adaptive Management

In partnership with the Bureau of Land Management and Colorado Parks and Wildlife, scientists from USGS Fort Collins Science Center and Western Ecological Research Center are applying a hierarchical monitoring framework to Gunnison sage-grouse ( Centrocercus minimus ) to evaluate population trends and inform adaptive management.
Learn More

Wild horse and livestock influences on vegetation and wildlife in sagebrush ecosystems: Implications for refining and validating Appropriate Management Level (AML)

USGS researchers are conducting a comprehensive study of wild horse and livestock records across the greater sage-grouse range to investigate impacts on vegetation and wildlife (specifically, sage-grouse and songbirds). Researchers will use these results to evaluate Appropriate Management Levels for wild horse and burros, and projections of vegetation productivity under a changing climate.
link

Wild horse and livestock influences on vegetation and wildlife in sagebrush ecosystems: Implications for refining and validating Appropriate Management Level (AML)

USGS researchers are conducting a comprehensive study of wild horse and livestock records across the greater sage-grouse range to investigate impacts on vegetation and wildlife (specifically, sage-grouse and songbirds). Researchers will use these results to evaluate Appropriate Management Levels for wild horse and burros, and projections of vegetation productivity under a changing climate.
Learn More